Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = ab + bc + cd < ab + ad + bc + cd = ( a + c ) ( b + d )
Áp dụng bất đẳng thức xy < (\(\frac{x+y}{2}\) )2 ta có
A = ( a+ c ) ( b+ d ) < ( \(\frac{a+c+b+d}{2}\) )2 = \(\frac{1}{4}\)
A = \(\frac{1}{4}\) \(\Leftrightarrow\) \(\begin{cases}a+c=\frac{1}{2}\\b+d=\frac{1}{2}\\ad=0\\a,b,c,d\ge0\end{cases}\)
Vậy max A = \(\frac{1}{4}\) khi a= b = \(\frac{1}{2}\) , c = d = 0
A = ab + bc + cd \(\le\)ab + ad + bc + cd = ( a + c ) ( b + d )
Áp dụng BĐT \(xy\le\left(\frac{x+y}{2}\right)^2\), ta có :
A = ( a + c ) ( b + d ) \(\le\)\(\left(\frac{a+b+c+d}{2}\right)^2=\frac{1}{4}\)
\(A=\frac{1}{4}\Leftrightarrow\hept{\begin{cases}a+c=b+d=\frac{1}{2}\\ad=0\\a,b,c,d\ge0\end{cases}}\)
Vậy GTLN của A là \(\frac{1}{4}\)
Mình lớp 7 nên có gì sai sót , bỏ qua cho .
Ta có :
A = ab + bc + cd
= 10a + b + 10b + c + 10c + d
= 10a + 11b + 11c + d
= a + b + c + d + 9a + 10b + 10c
= 1 + 9a + 10b + 10c
Để A lớn nhất thì b hoặc c lớn nhất tức bằng 1 vì 10b và 10c có hệ số lớn nhất trong biểu thức .
Giả sử là b => c = 0.
a = 0.
=> A = 11
Vậy ...
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
\(1-c=a+b\ge2\sqrt{ab}\Rightarrow4ab\le\left(1-c\right)^2\)
\(2bc+ca\le2bc+2ca=2c\left(a+b\right)=2c\left(1-c\right)\)
Từ đó ta có:
\(P\le\left(1-c\right)^2+2c\left(1-c\right)=1-c^2\le1\)
\(P_{max}=1\) khi \(\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\)
\(M=\frac{1}{\left(a+b+c\right)^2-2ab-2bc-2ac}+\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}>=\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+ac+bc}\)(1)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+ac+bc}+\frac{1}{ab+ac+bc}+\frac{7}{ab+ac+bc}\)
\(>=\frac{9}{a^2+b^2+c^2+ab+ac+bc+ab+ac+bc}+\frac{7}{ab+ac+bc}\)
\(=\frac{9}{a^2+b^2+c^2+2ab+2ac+2bc}+\frac{7}{ab+ac+bc}=\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+ac+bc}\)
\(=9+\frac{7}{ab+ac+bc}\)(2)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc>=ab+ac+bc+2ab+2ac+2bc\)
\(=3ab+3ac+3bc\Rightarrow\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}>=ab+ac+bc\)
\(\Rightarrow9+\frac{7}{ab+ac+bc}>=9+\frac{7}{\frac{1}{3}}=9+21=30\)(4)
từ (1)(2)(3)(4)\(\Rightarrow M=\frac{1}{1-2\left(ab+ac+bc\right)}+\frac{1}{abc}>=30\)
dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
vậy min M là 30 khi \(a=b=c=\frac{1}{3}\)
\(A=ab+bc+cd\le ab+ad+bc+cd=\left(a+c\right)\left(b+d\right)\)
Áp dụng bất đẳng thức \(xy\le\left(\frac{x+y}{2}\right)^2\) ta có :
\(A=\left(a+c\right)\left(b+d\right)\le\left(\frac{a+c+b+d}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow A=\frac{1}{4}\Leftrightarrow\begin{cases}a+c=\frac{1}{2}\\b+d=\frac{1}{2}\\ad=0\\a,b,c,d\ge0\end{cases}\)
Vậy \(Max_A=\frac{1}{4}\Leftrightarrow a=b=\frac{1}{2},c=d=0\)
Không mất tính tổng quát , giả sử \(a\ge b\ge c\ge d\)
Khi đó : \(A=ab+bc+cd\le ab+ac+ad=a\left(b+c+d\right)=a\left(1-a\right)\)
Mà \(a\left(1-a\right)=-a^2+a=-\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Suy ra \(A\le\frac{1}{4}\).
Vậy MaxA = 1/4
(Với cách này không cần chỉ ra đẳng thức xảy ra vẫn được :)