Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2x+1\right)^2-\left(3x+2\right)^2+2x+11\)
\(=4x^2+4x+1-\left(9x^2+12x+4\right)+2x+11\)
\(=-5x^2-6x+8\)
\(=-5\left(x+\dfrac{3}{5}\right)^2+\dfrac{49}{5}\le\dfrac{49}{5}\)
\(A_{max}=\dfrac{49}{5}\) khi \(x=-\dfrac{3}{5}\)
\(B=-2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+\dfrac{49}{8}=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\)
\(B_{max}=\dfrac{49}{8}\) khi \(x=-\dfrac{3}{4}\)
\(B=-2x^2-3x+5=-2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+\dfrac{49}{8}=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\)
\(maxB=\dfrac{49}{8}\Leftrightarrow x=-\dfrac{3}{4}\)
A, -2x^2<,=0
4-2x^2<,=4
dấu = xảy ra <=> 2x^2=0
<=>x=0
vậy GTLN của A=4 đạt đc khi x=0
\(A=4-2x^2\le4\)(Vì \(x^2\ge0\))
Dấu '' = '' xảy ra khi: \(x=0\)
Vậy \(MaxA=4\Leftrightarrow x=0\)
\(B=-3x^2+2x-5\)
\(B=-3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)-\frac{14}{3}\)
\(B=-\left(x-\frac{1}{3}\right)^2-\frac{14}{3}\le\frac{-14}{3}\)
Dấu '' = '' xảy ra khi:
\(x-\frac{1}{3}=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(MaxB=\frac{-14}{3}\Leftrightarrow\frac{1}{3}\)
A) \(A=-3x^2+x+1\)
\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)
\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)
\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)
Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)
Dấu "=" xảy ra khi:
\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)
Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)
B) \(B=2x^2-8x+1\)
\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(B=2\left(x-2\right)^2-7\)
Mà: \(2\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu "=" xảy ra khi:
\(x-2=0\Rightarrow x=2\)
Vậy: \(B_{min}=2.khi.x=2\)
Ta có -2x2+3x+1
=-2(x2-\(\frac{3}{2}x\))+1
=-2(x2-2.\(\frac{3}{4}x\)+\(\frac{9}{16}-\frac{9}{16}\))+1
=-2(x-\(\frac{3}{4}\))2+\(\frac{9}{8}\)+1
==-2(x-\(\frac{3}{4}\))2+\(\frac{17}{8}\)
Đếnđây chắc bn tự lm đc r.tk mk nha
Giải: Ta có:
B = \(\frac{3x^2-6x+17}{x^2-2x+5}=\frac{3\left(x^2-2x+1\right)+14}{\left(x^2-2x+1\right)+4}=\frac{3\left(x-1\right)^2+14}{\left(x-1\right)^2+4}=3+\frac{14}{\left(x-1\right)^2+4}\)
Do \(\left(x-1\right)^2\ge0\forall x\) => \(\left(x-1\right)^2+4\ge4\forall x\)
=> \(\frac{14}{\left(x-1\right)^2+4}\le\frac{7}{2}\forall x\)
=> \(3+\frac{14}{\left(x-1\right)^2+4}\le\frac{13}{2}\forall x\)
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
Vậy MaxA = 13/2 <=> x = 1
a) \(A=2x^2\)\(+\)\(10\)\(-\)\(1\)
\(=2\left(x^2+5x-\frac{1}{2}\right)\)
\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(=2\left(x+\frac{5}{2}\right)^2\)\(=\frac{27}{2}\)> hoặc = \(\frac{-27}{2}\)\(=-13,5\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(x+\frac{5}{2}=0\)
\(x=\frac{-5}{2}=-2,5\)
Vậy GTLN của A bằng -13,5 khi x = -2,5
b) \(B=3x-2x^2\)
\(=\)\(-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}\right)\)
\(=-2\left[\left(x-\frac{3}{4}\right)^2-\frac{9}{16}\right]\)
\(=-2\left(x-0,75\right)^2\)\(+\)\(\frac{9}{8}\)< hoặc = \(\frac{9}{8}\)\(=\)\(1,125\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(x-0,75=0\)
\(x=0,75\)
Vậy GTLN của B bằng 1,125 khi x = 0,75
A=-3(x^2 -2x1/3 +1/9)+1/3
=-3(x-1/3)^2 +1/3
MaxA=1/3 khi x=1/3
Ta có: \(-3x^2+2x=-3\left(x^2-2.\dfrac{4}{3}x+\dfrac{16}{9}\right)+\dfrac{16}{3}=-3\left(x-\dfrac{4}{3}\right)^2+\dfrac{16}{3}\)
Vì \(-3\left(x-\dfrac{4}{3}\right)^2\le0\Leftrightarrow-3\left(x-\dfrac{4}{3}\right)^2+\dfrac{16}{3}\le\dfrac{16}{3}\)
Dấu "=" xảy ra ⇔ \(x=\dfrac{4}{3}\)