K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

A) \(A=-3x^2+x+1\)

\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)

Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)

Dấu "=" xảy ra khi:

\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)

Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)

B) \(B=2x^2-8x+1\)

\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(B=2\left(x-2\right)^2-7\)

Mà: \(2\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra khi:

\(x-2=0\Rightarrow x=2\)

Vậy: \(B_{min}=2.khi.x=2\)

25 tháng 10 2023

câu a) bạn viết sai đề rồi

 

14 tháng 11 2017

a, N = 2 + 6/x^2-8x+22

Có : x^2-8x+22 = (x-4)^2 + 6 >= 6 => 6/x^2-8x+22 <= 6/6 = 1 => N <= 2+1=3

Dấu "=" xảy ra <=> x-4 = 0 <=> x=4

Vậy Max N =3 <=> x=4

k mk nha

14 tháng 11 2017

Cảm ơn bạn đã giúp mink nhưng bạn làm kiểu thế mink ko hiểu. Mong bạn sửa lại !

Bài 1: 

a) Ta có: \(A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4-2\right)\)

\(=-\left(x+2\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-2

b) Ta có: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)

c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=-1

Bài 2: 
a) Ta có: \(=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)

b) Ta có: \(B=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)

c) Ta có: \(E=x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)

13 tháng 8 2016

a)

A(x)=x2+x+1

A(x)=x2+x+1/4-1/4+1

A(x)=(x+1/2)2+3/4

(x+1/2)2 ≥0

=> (x+1/2)2+3/4≥3/4

=> A(x)≥3/4

dấu "=" xảy ra khi (x+1/2)2=0

ta có:

A(x)=(x+1/2)2+3/4=3/4

=> (x+1/2)2=0

=> x=-1/2

vậy Min của A(x) là 3/4tại x=-1/2

b) B(x)=2x2+3x+5

=>B(x)= 2(x2+3/2x+5/2)

=> B(x)=2(x2+3/2x+9/16-9/16+5/2)

=> B(x)=2[ (x+3/4)2+31/16]

ta có:(x+3/4)2≥0

=>(x+3/4)2+31/16≥31/16

=>2[(x+3/4)2+31/16]≥31/8

=> B(x)≥31/8

dấu "=" xảy ra khi (x+3/4)2=0

với x+3/4=0

=>x=-3/4

vậy min của B(x) là 31/8 tại x=-3/4

3 tháng 7 2018

2/

a, \(A=2x^2+6x-5=2\left(x^2+3x-\frac{5}{2}\right)=2\left(x^2+2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{19}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{19}{4}\right]=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)

Dấu "=" xảy ra khi x=-3/2

Vậy Amin=-19/2 khi x=-3/2

b,bài này phải tìm min 

 \(B=\left(2x-x\right)\left(x+4\right)=x\left(x+4\right)=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2+4\ge4\)

Dấu "=" xảy ra khi x = 2

Vậy Bmin=4 khi x=2

31 tháng 10 2018

Bài 2)Ta có:

\(2x^2+6x-5\)

\(=2x^2+6x+\frac{9}{2}-\frac{19}{2}\)

\(=2\left(x^2+3x+\frac{9}{4}\right)-\frac{19}{2}\)

\(=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)

1 tháng 7 2019

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

2 tháng 7 2019

giải hết i

6 tháng 1 2020

a) \(A=\frac{2x^2+9}{x^2+4}=\frac{\left(2x^2+8\right)+1}{x^2+4}=\frac{2\left(x^2+4\right)+1}{x^2+4}=2+\frac{1}{x^2+4}\)

Ta thấy \(x^2\ge0\forall x\)

=> \(x^2+4\ge4\forall x\)

=> \(\frac{1}{x^2+4}\le\frac{1}{4}\forall x\)

=> \(A\le\frac{1}{4}+2=\frac{9}{4}\)

\(MaxA=\frac{9}{4}\Leftrightarrow x=0\)

25 tháng 8 2020

help me, please

25 tháng 8 2020

1. a . 3x2 - 6x = 0

\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b. x3 - 13x = 0

\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)

c. 5x ( x - 2001 ) - x + 2001 = 0

<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0

\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)

25 tháng 6 2019

1, Ta có: \(A=3x^2+8x+9=3\left(x^2+\frac{8}{3}x+3\right)=3\left(x^2+\frac{8}{3}x+\frac{16}{9}+\frac{11}{9}\right)\)

\(=3\left(x+\frac{4}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\forall x\)

=> Min A = 11/3 tại x = -4/3

2, Ta có: \(A=-2x^2+6x+3=-2\left(x^2-3x-\frac{3}{2}\right)=-2\left(x^2-3x+\frac{9}{4}-\frac{15}{4}\right)\)

\(=-2\left(x-\frac{3}{2}\right)^2+\frac{15}{2}\le\frac{15}{2}\forall x\)

=> Max A = 15/2 tại x = 3/2

=.= hk tốt!!

25 tháng 6 2019

Cảm ơn