Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(P=\left(2x-5y\right)^2-\left(15y-6x\right)^2-\left|xy-90\right|\)
\(=\left(2x-5y\right)^2-\left(6x-15y\right)^2-\left|xy-90\right|\)
\(=\left(2x-5y\right)^2-9\left(2x-5y\right)^2-\left|xy-90\right|\)
\(=-8\left(2x-5y\right)^2-\left|xy-90\right|\)
\(=-\left[8\left(2x-5y\right)^2+\left|xy-90\right|\right]\)
Do \(8\left(2x-5y\right)^2\ge0;\left|xy-90\right|\ge0\Rightarrow8\left(2x-5y\right)^2+\left|xy-90\right|\ge0\)
\(\Rightarrow P\le0\)
Dấu "=" xảy ra khi và chỉ khi:\(\hept{\begin{cases}8\left(2x-5y\right)^2=0\\\left|xy-90\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-5y=0\\xy-90=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=5y\\xy=90\end{cases}}\)
\(\Rightarrow2xy=5y^2\Rightarrow2\cdot90=5y^2\Rightarrow5y^2=180\Rightarrow y^2=36\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=15\\x=-15\end{cases}}\)
Vậy \(P_{max}=0\Leftrightarrow x=15;y=6\left(h\right)x=-15;y=-6\)
P/S:(h) có nghĩa là hoặc.
Tham khảo
P=(4x2x2 +25y2y2 - 20xy) - (225y2y2 +36x2x2 - 180xy) - /xy-90/
=4x2x2 +25y2y2 - 20xy - 225y2y2 - 36x2x2 + 180xy - /xy-90/
=-32x2x2 + 160xy - 200y2y2 -/xy-90/
=-8(4x2x2 - 20xy + 25y2y2) -/xy-90/
= -8 (2x−5y)2(2x−5y)2 -/xy-90/
Ta thấy:(4x2x2 - 20xy + 25y2y2) /xy-90/≥≥ 0 và /xy-90//≥≥ 0
8 (2x−5y)2(2x−5y)2≤≤ 0 và -/xy-90//≤≤ 0
Do đó:- -8 (2x−5y)2
Hay: P/ 0
Vậy: GTLN của P là 0 đạt được khi ⇒
\(P=\left(2x-5y\right)^2-\left(15y-6x\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=\left(2x-5y\right)^2-\left(6x-15y\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=\left(2x-5y\right)^2-3\left(2x-3y\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=\left(2x-5y\right)^2.\left(1-3\right)-\left|xy-90\right|\)
\(\Leftrightarrow P=-4\left(2x-5y\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=-\left[4\left(2x-5y\right)^2-\left|xy-90\right|\right]\)
Ta có \(\hept{\begin{cases}\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)
\(\Rightarrow\hept{\begin{cases}4\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)
\(\Rightarrow P=-\left[4\left(2x-5y\right)^2+\left|xy-90\right|\right]\le0\forall xy\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4\left(2x-5y\right)^2=0\\\left|xy-90\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-5y\right)^2=0\\xy-90=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-5y=0\\xy=90\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=5y\\xy=90\end{cases}}\)
\(\Leftrightarrow2xy=5y^2\)\(\Leftrightarrow2.90=5y^2\Leftrightarrow5y^2=180\Leftrightarrow y^2=36\)
\(\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=90:6=15\\x=90:\left(-6\right)=-15\end{cases}}\)
Vậy \(P_{max}=0\Leftrightarrow x=15;y=6\) hoặc x=-15; y=-6
Có 1 vài chỗ ko ok cho lắm bạn thông cảm
Học tốt