K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

gợi ý thôi em câu này có gì khó đâu

c lớn hơn hoặc bằng 1

d nhỏ hơn hoặc = 10

trị tuyệt đối lớn lơn hoặc = 0

mẫu lớn số bé mẫu bé số lớn

16 tháng 8 2016

Câu 1:

a)A=|x+1|+2016

       Vì |x+1|\(\ge\)0

           Suy ra:|x+1|+2016\(\ge\)2016

     Dấu = xảy ra khi x+1=0

                                x=-1

 Vậy MinA=2016 khi x=-1

b)B=2017-|2x-\(\frac{1}{3}\)|

       Vì -|2x-\(\frac{1}{3}\)|\(\le\)0

             Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017

    Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)

                               \(2x=\frac{1}{3}\)

                                \(x=\frac{1}{6}\)

Vậy Max B=2017 khi \(x=\frac{1}{6}\)

c)C=|x+1|+|y+2|+2016

         Vì |x+1|\(\ge\)0

              |y+2|\(\ge\)0

     Suy ra:|x+1|+|y+2|+2016\(\ge\)2016

                Dấu = xảy ra khi x+1=0;x=-1

                                           y+2=0;y=-2

Vậy MinC=2016 khi x=-1;y=-1

d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10

      =10-|x+\(\frac{1}{2}\)|-|y-1|

             Vì      -|x+\(\frac{1}{2}\)|\(\le\)0

                         -|y-1|  \(\le\)0

    Suy ra:      10-|x+\(\frac{1}{2}\)|-|y-1|    \(\le\)10

Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)

                           y-1=0;y=1

          Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1           



 

16 tháng 8 2016

Bài 1:

a)Ta thấy: \(\left|x+1\right|\ge0\)

\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)

\(\Rightarrow A\ge2016\)

Dấu = khi x=-1

Vậy MinA=2016 khi x=-1

b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)

\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)

\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)

\(\Rightarrow B\le2017\)

Dấu = khi x=1/6

Vậy Bmin=2017 khi x=1/6

c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)

\(\Rightarrow D\ge2016\)

Dấu = khi x=-1 và y=-2

Vậy MinD=2016 khi x=-1 và y=-2

d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)

\(\Rightarrow D\le10\)

Dấu = khi x=-1/2 và y=1

Vậy MaxD=10 khi x=-1/2 và y=1

1 tháng 5 2017

a) -3x-2=0

=>-3x=2

=>3x=-2

=>x=\(\frac{-2}{3}\)

b)Biểu thức \(\frac{3-5x}{x+1}\)=0 \(\Leftrightarrow\)3-5x=0

=>5x=3

=>x=\(\frac{3}{5}\)

c)[2x+3] và [-3x-1] là các số \(\ge\)0

=>2x+3+(-3x-1)=0

=>2x+3-3x-1=0

-x+2=0

=>-x=-2

x=2

1 tháng 5 2017

a, -3x-2=0

-3x=2

x=-2/3

b, (3-5x)/(x+1)=0

3-5x=0

-5x=-3

x=3/5

c,x=2

2 tháng 3 2021

\(A=\frac{5}{2}x+1\)                                         \(B=0,4x-5\)

a) \(A=\frac{5}{2}.\frac{1}{5}+1\)                                \(B=0,4.\left(-10\right)-5\)

\(A=\frac{1}{2}+1=1\)                                    \(B=-4-5=-9\)

4 tháng 1 2022
a+7,b+7,b+7,a+7
22 tháng 5 2019

A = 3 x | 1 - 2x | - 5

Ta co : | 1 - 2x | \(\ge\)0 nen 3 x | 1 - 2x | \(\ge\)0

A = 3 x | 1 - 2x | - 5 \(\ge\)- 5

Vậy min A = -5 \(\Leftrightarrow\)x = \(\frac{1}{2}\)

1 bài thôi . còn lại tương tự

bài cuối dùng BĐT : | a | + | b | \(\ge\)| a + b | nhé

22 tháng 5 2019

Vậy còn tìm max ạ???

5 tháng 7 2017

Bài 2 : 

 Ta có : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in R\)

\(\Rightarrow A=\frac{3}{4}+\left(x-\frac{1}{2}\right)^2\ge\frac{3}{4}\forall x\in R\)

Vậy Amin = \(\frac{3}{4}\) dấu "=" chỉ sảy ra khi x = \(\frac{1}{2}\)

6 tháng 7 2017

Cảm ơn bạn nhiều nha

Còn câu b bạn suy nghĩ được chưa

20 tháng 9 2019

1. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath

a: A>0

=>\(x^2-3x>0\)

=>x(x-3)>0

TH1: \(\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x>3\end{matrix}\right.\)

=>x>3

TH2: \(\left\{{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x< 3\end{matrix}\right.\)

=>x<0

d: Để D<0 thì \(x^2+\dfrac{5}{2}x< 0\)

=>\(x\left(x+\dfrac{5}{2}\right)< 0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x+\dfrac{5}{2}< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x< -\dfrac{5}{2}\end{matrix}\right.\)

=>Loại

Th2: \(\left\{{}\begin{matrix}x< 0\\x+\dfrac{5}{2}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x>-\dfrac{5}{2}\end{matrix}\right.\)

=>\(-\dfrac{5}{2}< x< 0\)

e: ĐKXĐ: x<>2

Để E<0 thì \(\dfrac{x-3}{x-2}< 0\)

TH1: \(\left\{{}\begin{matrix}x-3>=0\\x-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=3\\x< 2\end{matrix}\right.\)

=>Loại

TH2: \(\left\{{}\begin{matrix}x-3< =0\\x-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =3\\x>2\end{matrix}\right.\)

=>2<x<=3

g: Để G<0 thì \(\left(2x-1\right)\left(3-2x\right)< 0\)

=>\(\left(2x-1\right)\left(2x-3\right)>0\)

TH1: \(\left\{{}\begin{matrix}2x-1>0\\2x-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{3}{2}\end{matrix}\right.\)

=>\(x>\dfrac{3}{2}\)

TH2: \(\left\{{}\begin{matrix}2x-1< 0\\2x-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x< \dfrac{3}{2}\end{matrix}\right.\)

=>\(x< \dfrac{1}{2}\)

18 tháng 8 2017

a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)

b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)

c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)

\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)

e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)

\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1

18 tháng 8 2017

Bài 2:

a)\(P=9-2\left|x-3\right|\)

Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)

\(\Rightarrow-2\left|x-3\right|\le0\)

\(\Rightarrow9-2\left|x-3\right|\le9\)

Khi x=3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(Q=\left|x-2\right|+\left|x-8\right|\)

\(=\left|x-2\right|+\left|8-x\right|\)

\(\ge\left|x-2+8-x\right|=6\)

Khi \(2\le x\le8\)