Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(u_{n+1}=\frac{n+2}{2^{n+2}}\left(\frac{2}{1}+...+\frac{2^{n+1}}{n+1}\right)=\frac{n+2}{2^{n+1}}\left(\frac{2^{n+1}}{n+1}u_n+\frac{2^{n+1}}{n+1}\right)=\frac{n+2}{2n+2}(u_n+1)\)
Ta chứng minh $u_n\geq 1(*)$ với mọi $n=1,2,...$
Thật vậy:
$u_1=1; u_2=\frac{3}{2}>1$. Giả sử $(*)$ đúng đến $n=k$
$u_{k+1}=\frac{k+2}{2k+2}(u_k+1)>\frac{2(k+2)}{2k+2}>1$
Do đó $u_n\geq 1$ với mọi $n=1,2,...$
Tiếp theo ta chứng minh $u_n< 1+\frac{4}{n}(**)$ với mọi $n=1,2,...$
Thật vậy:
$u_1=1< 1+\frac{4}{1}$
$u_2=\frac{3}{2}< 1+\frac{4}{2};....;u_4=\frac{5}{3}<1+\frac{4}{4}$
....
Giả sử $(**)$ đúng đến $n=k\geq 5$. Khi đó:
\(u_{k+1}=\frac{k+2}{2k+2}(u_k+1)<\frac{k+2}{2k+2}(2+\frac{4}{k})=\frac{(k+2)^2}{k(k+1)}\)
\(\frac{(k+2)^2}{k(k+1)}-(1+\frac{4}{k+1})=\frac{(k+2)^2-k(k+5)}{k(k+1)}=\frac{4-k}{k(k+1)}<0\) với mọi $k\geq 5$
$\Rightarrow u_{k+1}< 1+\frac{4}{k+1}$. Phép quy nạp hoàn tất.
Do đó $(**)$ đúng
Từ $(*); (**)\Rightarrow 1\leq u_n\leq 1+\frac{4}{n}$ với mọi $n=1,2,...$
Mà $\lim (1+\frac{4}{n})=1$ khi $n\to +\infty$ nên $\lim u_n=1$
\(u_n-u_{n+1}=u_n+\left(1-u_{n+1}\right)-1\ge2\sqrt{u_n\left(1-u_{n+1}\right)}-1>0\)
\(\Rightarrow u_n>u_{n+1}\Rightarrow\) dãy giảm
Dãy giảm và bị chặn dưới bởi 0 nên có giới hạn hữu hạn.
Gọi giới hạn đó là k
\(\Rightarrow k\left(1-k\right)\ge\dfrac{1}{4}\Rightarrow\left(2k-1\right)^2\le0\Rightarrow k=\dfrac{1}{2}\)
Vậy \(\lim\left(u_n\right)=\dfrac{1}{2}\)
2:
a: \(u_1=\dfrac{2-1}{1+1}=\dfrac{1}{2}\)
\(u_2=\dfrac{2\cdot2-1}{2+1}=1\)
\(u_3=\dfrac{2\cdot3-1}{3+1}=\dfrac{5}{4}\)
\(u_4=\dfrac{2\cdot4-1}{4+1}=\dfrac{7}{5}\)
b: Đặt \(\dfrac{2n-1}{n+1}=\dfrac{13}{7}\)
=>7(2n-1)=13(n+1)
=>14n-7=13n+13
=>n=20
=>13/7 là số hạng thứ 20 trong dãy
1:
a: u1=1^2-1=0
u2=2^2-1=3
u3=3^2-1=8
u4=4^2-1=15
b: 99=n^2-1
=>n^2=100
mà n>=0
nên n=10
=>99 là số thứ 10 trong dãy
a) \(\begin{array}{l}\lim {u_n} = \lim \left( {3 + \frac{1}{n}} \right) = \lim 3 + \lim \frac{1}{n} = 3 + 0 = 3\\\lim {v_n} = \lim \left( {5 - \frac{2}{{{n^2}}}} \right) = \lim 5 - \lim \frac{2}{{{n^2}}} = 5 - 0 = 5\end{array}\)
b)
\(\begin{array}{l}\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n} = 3 + 5 = 8\\\lim \left( {{u_n} - {v_n}} \right) = \lim {u_n} - \lim {v_n} = 3 - 5 = - 2\\\lim \left( {{u_n}.{v_n}} \right) = \lim {u_n}.\lim {v_n} = 3.5 = 15\\\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{\lim {u_n}}}{{\lim {v_n}}} = \frac{3}{5}\end{array}\)