K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

Q = 2x2 - 6x  => 2Q = 4x2 - 12x  => 2Q = 4x2 - 12x + 9 - 9  => 2Q = (2x - 3)2 - 9 \(\ge\)-9   => Q \(\ge\)-4,5

Đẳng thức xảy ra khi: (2x - 3)2 = 0  => x = \(\frac{2}{3}\)

Vậy giá trị nhỏ nhất của Q là -4,5 khi x = \(\frac{2}{3}\)

26 tháng 1 2016

Nhóm các số vào để tạo hằng đẳng thức đi!

25 tháng 10 2019

\(A=x^2+4x+100\)

\(A=x^2+2.x.2+2^2+96\)

\(A=\left(x+2\right)^2+96\)

           \(\left(x+2\right)^2+96\le0\)

           \(\left(x+2\right)^2+96\le96\)

    \(\Leftrightarrow A\le96\)

\(A_{min}\Leftrightarrow A=10\)

Dấu "=" xảy ra : \(\left(x+2\right)^20\)

                             \(x+2=0\)

                             \(x=-2\)

     

25 tháng 10 2019

Thay hộ mik cái dấu \(\le\)thành dấu \(\ge\)vs ak

19 tháng 7 2016

\(A=x^2-6x+11=x^2-2.x.3+3^2+2\)

\(A=\left(x-3\right)^2+2\)

\(\left(x-3\right)^2\ge0\)với mọi \(x\in R\)

nên \(\left(x-3\right)^2+2\ge2\)với mọi x\(x\in R\)

Vậy \(Min_A=2\)khi đó \(x=3\)

22 tháng 10 2020

đặt y = 1/x suy ra y <=1,

ta có P = 1 -2y+2016y^2 

Tự làm tiếp nhé

13 tháng 7 2020

a) A = 5x2 - 20x + 2020 = 5(x2 - 4x + 4) + 2000 = 5(x - 2)2 + 2000 \(\ge\)2000 \(\forall\)x

Dấu "=" xảy ra <=> x  - 2 = 0 <=> x = 2

Vậy MinA = 2000 khi x = 2+

b) B = -3x2 - 6x + 15 = -3(x2 + 2x + 1) + 18 = -3(x + 1)2 + 18 \(\le\)18 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MaxB = 18 khi x = -1

c) C = 9x2 + 2x + 7 = (9x2 + 2x + 1/9) + 62/9 = (3x  + 1/3)2  + 62/9 \(\ge\)62/9 \(\forall\)x

Dấu "=" xảy ra <=> 3x + 1/3 = 0 <=> x  = -1/9

Vậy MinC = 62/9 khi x = -1/9

d) D = 16 - 2x2 - 8x = -2(x2 + 4x + 4) + 24 = -2(x + 2)2 + 24 \(\le\) 24 \(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy MaxD = 24 khi x = -2

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

22 tháng 8 2016

a có A = x^2+2x+5 =(x^2+2x+1)+4=(x+1)^2+4 \(\ge\)4

 Dấu bằng xảy ra <=>x+1=0 <=>x=-1

22 tháng 8 2016

\(A=x^2+2x+5=x^2+2.x+1+4=\left(x+1\right)^2+4\ge4\)

Đẳng thức xảy ra khi: \(x+1=0\Rightarrow x=-1\)

Vậy giá trị nhỏ nhất của A là 4 khi x= -1