Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Với \(x = - 3\)\( \Rightarrow f\left( { - 3} \right) = 4.\left( { - 3} \right) - 1 = - 13;g\left( { - 3} \right) = - 0,5.\left( { - 3} \right) + 8 = 9,5\);
+ Với \(x = - 2\)\( \Rightarrow f\left( { - 2} \right) = 4.\left( { - 2} \right) - 1 = - 9;g\left( { - 2} \right) = - 0,5.\left( { - 2} \right) + 8 = 9\);
+ Với \(x = - 1\)\( \Rightarrow f\left( { - 1} \right) = 4.\left( { - 1} \right) - 1 = - 5;g\left( { - 1} \right) = - 0,5.\left( { - 1} \right) + 8 = 8,5\);
+ Với \(x = 0\)\( \Rightarrow f\left( 0 \right) = 4.0 - 1 = - 1;g\left( 0 \right) = - 0,5.0 + 8 = 8\);
+ Với \(x = 1\)\( \Rightarrow f\left( 1 \right) = 4.1 - 1 = 3;g\left( 1 \right) = - 0,5.1 + 8 = 7,5\);
+ Với \(x = 2\)\( \Rightarrow f\left( 2 \right) = 4.2 - 1 = 7;g\left( 2 \right) = - 0,5.2 + 8 = 7\);
+ Với \(x = 3\)\( \Rightarrow f\left( 3 \right) = 4.3 - 1 = 11;g\left( 3 \right) = - 0,5.3 + 8 = 6,5\).
Ta có bảng sau:
\(x\) | –3 | –2 | –1 | 0 | 1 | 2 | 3 |
\(y = f\left( x \right) = 4x - 1\) | –13 | –9 | –5 | –1 | 3 | 7 | 11 |
\(y = g\left( x \right) = - 0,5x + 8\) | 9,5 | 9 | 8,5 | 8 | 7,5 | 7 | 6,5 |
7:
a: =>0,5x-5=2 hoặc 0,5x-5=-2
=>0,5x=3 hoặc 0,5x=7
=>x=6 hoặc x=14
b: |5x-2|=-3
mà |5x-2|>=0
nên ptvn
c: =>1/4x+3=0
=>1/4x=-3
=>x=-12
a) \(\left(2x^3y-0,5x^2\right)^3\)
\(=\left(2x^3y\right)^3-3\left(2x^3y\right)^20,5x^2+3.2x^3y\left(0,5x^2\right)^2-\left(0,5x^2\right)^3\)
\(=8x^9y^3-6x^8y^2+1,5x^7y-0,125x^6\)
b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)
\(=x^3-3^3\)
\(=x^3-27.\)
a,\(\left(2x^3y-0,5x^2\right)^3=\left(2x^3y\right)^3-3.\left(2x^3y\right)^2.\left(0,5x^2\right)+3.\left(0,5x^2\right)^2.\left(2x^3y\right)-\left(0,5x^2\right)^3\)
\(=8x^9y^3-6x^8y^2+\frac{3}{2}x^7y-\frac{1}{8}x^6\)
b,\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3=x^3-27y^3\)
\(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+3.x^2+3^2\right]\)
\(=\left(x^2\right)^3-3^3=x^6-27\)
A= 4x2 - 3x + 1
= (2x) 2 - 2.2x.4/3 + (4/3) 2 - (4/3) 2 + 1
= (2x - 4/3) 2 - 7/9
Nhận xét: (2x - 4/3) 2 \(\ge\)0 với mọi x
=> (2x - 4/3) 2 - 7/9 \(\le\) 7/9
=> Min A là 9
Dấu "=" xảy ra <=> 2x - 4/3 = 0 <=> 2x = 4/3 <=> x = 2/3
Vậy..
Đặt \(a=x^2+x-2\), ta có:
\(G=\left(a-4\right)\left(a+4\right)\)
\(=a^2-16\ge-16\)
Dấu = xảy ra khi a=0
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Rightarrow x=-2;1\)
Vậy...
a: \(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(3x-2-2x\right)\left(3x-2+2x\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(x-2\right)\left(5x-2\right)=0\end{matrix}\right.\)
hay x=2
b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{10}{3}\\\left(-3,5x-1,5x-5\right)\left(-3,5x+1,5x+5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{10}{3}\\\left(-5x-5\right)\left(-2x+5\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-1;\dfrac{5}{2}\right\}\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\\left(3x-1-x-15\right)\left(3x-1+x+15\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\\left(2x-16\right)\left(4x+14\right)=0\end{matrix}\right.\Leftrightarrow x=8\)
d: \(\Leftrightarrow\left|x-2\right|=0,5x-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=8\\\left(0,5x-4-x+2\right)\left(0,5x-4+x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=8\\\left(-0,5x-2\right)\left(1,5x-6\right)=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Lời giải:
$A=(x-1)(x-2)(x-3)(x-4)=[(x-1)(x-4)][(x-2)(x-3)]=(x^2-5x+4)(x^2-5x+6)$
$=a(a+2)$ (đặt $x^2-5x+4=a$)
$=a^2+2a=(a+1)^2-1=(x^2-5x+5)^2-1\geq -1$
Vậy $S_{\min}=-1$. Giá trị này đạt tại $x^2-5x+5=0$
$\Leftrightarrow x=\frac{5\pm \sqrt{5}}{2}$
B = (0,5x^2)^2 - 3.|0,5x^2+x| + 2,25 - 2,25
= ( |0,5x^2+x| - 1,5 ) ^2 - 2,25 >= -2,25
Dấu "=" xảy ra <=> |0,25x^2+x| = 1,5
<=> 0,5x^2+x = 1,5 hoặc 0,5x^2+x = -1,5
Đến đó bạn giải 2 pt đó để tìm x nha
Vậy Min của B = -2,25 <=> x=......