K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2019

A= 4x2 - 3x + 1

= (2x) 2 - 2.2x.4/3 + (4/3) 2 - (4/3) 2 + 1

= (2x - 4/3) 2 - 7/9

Nhận xét: (2x - 4/3) 2 \(\ge\)0 với mọi x

=> (2x - 4/3) 2 - 7/9 \(\le\) 7/9

=> Min A là 9

Dấu "=" xảy ra <=> 2x - 4/3 = 0 <=> 2x = 4/3 <=> x = 2/3

Vậy..

28 tháng 8 2019

thanks bn nhiều

NV
24 tháng 10 2019

\(A=\left(x+5\right)^2-62\ge-62\)

\(B=\left(\frac{1}{2}x^2+1-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)

\(C=\left(x-3y+2\right)^2+\left(x-5\right)^2-9\ge-9\)

\(D=\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\)

\(A=-\left(x-3\right)^2+12\le12\)

\(B=-2x^2-5x+3=-2\left(x+\frac{5}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)

\(C=\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)

23 tháng 10 2019

\(A=x^2+10x-37\)

     \(=\left(x+5\right)^2-62\) 

Có \(\left(x+5\right)^2\ge0\forall x\in R\) 

 \(\Rightarrow\left(x+5\right)^2-62\ge-62\forall x\in R\) 

Dấu = xảy ra \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\) 

Vậy A đạt GTNN là -62 tại x=-5

6 tháng 3 2018

Hỏi đáp Toán

9 tháng 11 2017

2)

a) \(x^3-5x^2+8x-4=0\)

\(\Leftrightarrow x^3-4x^2-x^2+4x+4x-4=0\)

\(\Leftrightarrow x^3-x^2-4x^2+4x+4x-4=0\)

\(\Leftrightarrow\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy x=1 ; x=2

b) \(2x^3-x^2+3x+6=0\)

\(\Leftrightarrow2x^3-2x-x^2-x+6x+6=0\)

\(\Leftrightarrow\left(2x^3-2x\right)-\left(x^2+x\right)+\left(6x+6\right)=0\)

\(\Leftrightarrow2x\left(x^2-1\right)-x\left(x+1\right)+6\left(x+1\right)=0\)

\(\Leftrightarrow2x\left(x-1\right)\left(x+1\right)-x\left(x+1\right)+6\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2-2x-x+6\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2-3x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x^2-3x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x^2-3x=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x^2-3x=-6\left(loai\right)\end{matrix}\right.\)

Vậy x=-1

a: \(A=x^2-3x+\dfrac{9}{4}-\dfrac{5}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\)

Dấu '=' xảy ra khi x=3/2

c: \(x^2-x+2=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\)

=>\(\dfrac{3}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}< =3:\dfrac{7}{4}=\dfrac{12}{7}\)

=>C>=-12/7

Dấu '=' xảy ra khi x=1/2

8 tháng 10 2016

a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^3+1\right)-\left(x^3-1\right)\)

\(=x^3+1-x^3+1\)

 \(=2\)

Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.

b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)

\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

\(=27\)

Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.

c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

\(=-65\)

Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.

d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

\(=0\)

Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.

15 tháng 9 2021

\(A=4x^2+6x=2x\left(2x+3\right)\)

\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)

\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)

\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)

\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)

\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)

15 tháng 9 2021

\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang