Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do \(\left|x\right|\ge0\)
\(\Rightarrow A=\left|x\right|+5\ge5\)
\(minA=5\Leftrightarrow x=0\)
b) Do \(\left|x-\dfrac{2}{3}\right|\ge0\)
\(\Rightarrow B=\left|x-\dfrac{2}{3}\right|-4\ge-4\)
\(minB=-4\Leftrightarrow x=\dfrac{2}{3}\)
c) Do \(\left|3x-1\right|\ge0\)
\(\Rightarrow C=\left|3x-1\right|-\dfrac{1}{2}\ge-\dfrac{1}{2}\)
\(minC=-\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{3}\)
\(A=\left|x\right|+5\ge5\)
Dấu \("="\Leftrightarrow x=0\)
\(B=\left|x-\dfrac{2}{3}\right|-4\ge-4\)
Dấu \("="\Leftrightarrow x-\dfrac{2}{3}=0\Leftrightarrow x=\dfrac{2}{3}\)
\(C=\left|3x-1\right|-\dfrac{1}{2}\ge-\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)
\(a,A=\left|3,4-x\right|+1,7\ge1,7\)
Dấu \("="\Leftrightarrow3,4-x=0\Leftrightarrow x=3,4\)
\(c,C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}4x-3=0\\5y+7,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-\dfrac{3}{2}\end{matrix}\right.\)
x^2 - 2xy + 6y^2 - 12x + 2y +45
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45
= (x - y - 6)^2 + 5y^2 - 10y + 9
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4
= (x - y - 6)^2 + 5.(y-1)^2 + 4
=>> MIN = 4 khi (x;y) = {(7;1)}
\(P\left(x\right)=6x^2-12x-30=6\left(x^2-2x-5\right)\)
\(P\left(x\right)=6\left(x^2-x-x+1-6\right)\)
\(=6\left[x\left(x-1\right)-\left(x-1\right)-6\right]\)
\(=6\left[\left(x-1\right)\left(x-1\right)-6\right]=6\left[\left(x-1\right)^2-6\right]=6\left(x-1\right)^2-36\)
Vì \(6\left(x-1\right)^2\ge0\Rightarrow6\left(x-1\right)^2-36\ge36\)
=>GTNN của P(x) là -36
dấu "=" xảy ra <=> \(6\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy...................
P(x)=6x2 - 12x - 30
=6(x2-2x-5)
ta thấy:
..... tự làm nhé
dấu "="xảy ra khi x=1
vậy GTLN của P(x)=-36 khi x=1
a, A=15-|x+1|
Co: |x+1|> hoac = 0 voi moi x.
=>15-|x+1|< hoac = 15 vs moi x.
MAX A=15 khi |x+1|=0
=>x+1=0
x=-1.
b,Co: |x-2|> hoac bang 0.
=>18+|x-2|> hoac bang 18.
Min B=18 khi |x+2|=0
=>x+2=0
x=-2
Nho k cho mk nhe
\(A=x^2-12x+18\)
\(A=x^2-2.x.6+36-36+18\)
\(A=\left(x-6\right)^2-18\)
Vì \(\left(x-6\right)^2\ge0\)
Nên \(\left(x-6\right)^2-18\ge-18\)
Vậy \(A_{MIN}=-18\Leftrightarrow x-6=0\Leftrightarrow x=6\)
Ta có : \(A=x^2-12x+18\)
\(=x^2-2.x.6+6^2-18\)
\(=\left(x-6\right)^2-18\)
Có : \(\left(x-6\right)^2\ge0\)
\(\Rightarrow\left(x-6\right)^2-18\ge-18\)
Dấu " = " xảy ra khi \(x-6=0\)
\(x=6\)
Vậy \(MIN_A=-18\) khi \(x=6\)