K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:Tìm giá trị của các biểu thức sau: a) B=2|x| - 3|y| với \(x=\frac{1}{2},y=-3\) b| C=2|x-2| - 3|1-x| với x=4 Bài 2:Rút gọn các biểu thức sau: a) |a|+a b) |a|-a c)|a|.a d) |a|:a e)3(x-1)-2|x+3| Bài 3: a)Tìm x biết: |2x+3|=x+2 b)Tìm giá trị nhỏ nhất của A=|x-2006|+|2007-x| khi x thay đổi Bài 4:Tìm x biết: a) \(\text{|}x-\frac{1}{3}\text{|}+\frac{4}{5}=\text{|}\left(-3,2\right)+\frac{2}{5}\text{|}\) b)...
Đọc tiếp

Bài 1:Tìm giá trị của các biểu thức sau:

a) B=2|x| - 3|y| với \(x=\frac{1}{2},y=-3\)

b| C=2|x-2| - 3|1-x| với x=4

Bài 2:Rút gọn các biểu thức sau:

a) |a|+a b) |a|-a c)|a|.a d) |a|:a e)3(x-1)-2|x+3|

Bài 3:

a)Tìm x biết: |2x+3|=x+2

b)Tìm giá trị nhỏ nhất của A=|x-2006|+|2007-x| khi x thay đổi

Bài 4:Tìm x biết:

a) \(\text{|}x-\frac{1}{3}\text{|}+\frac{4}{5}=\text{|}\left(-3,2\right)+\frac{2}{5}\text{|}\)

b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Bài 5: Cho

\(A=\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2\)

\(B=\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}\)

a)Rút gọn A và B

b)Tìm x \(\in\)Z để A<x<B

Bài 6:Tìm giá trị nhỏ nhất của biểu thức

M= |x-2002|+|x-2001|

Bài 7:Tìm x và y biết:

a) 2|2x-3|=\(\frac{1}{2}\)

b) 7,5-3|5-2x|= -4,5

c) |3x-4|+|5y+5|=0

d) |x-7|+2x+5=6

Bài 8:Tìm giá trị nhỏ nhất của biểu thức

a) A=3,7+|4,3-x|

b) B= |3x+8,4|-24,2

c) C= |4x-3|+|5y+7,5|+17,5

Bài 9:Tìm giá trị lớn nhất của biểu thức

a) D=5,5-|2x-1,5|

b) E= -|10,2-3x|-14

c) F=4-|5x-2|-|3y+12|

2
29 tháng 7 2017

Bài 6:

\(M=\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(M\ge\left|2002-x+x-2001\right|=\left|1\right|=1\)

Dấu " = " khi \(\left\{{}\begin{matrix}2002-x\ge0\\x-2001\ge0\end{matrix}\right.\Rightarrow2001\le x\le2002\)

Vậy \(MIN_M=1\) khi \(2001\le x\le2002\)

Bài 8:

a, Ta có: \(A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu " = " khi \(\left|4,3-x\right|=0\Rightarrow x=4,3\)

Vậy \(MIN_A=3,7\) khi x = 4,3

b, \(B=\left|3x+8,4\right|-24,2\ge-24,2\)

Dấu " = " khi \(\left|3x+8,4\right|=0\Rightarrow x=-2,3\)

Vậy \(MIN_B=-24,2\) khi x = -2,3

c, Ta có: \(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{matrix}\right.\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)

\(\Rightarrow C\ge17,5\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-1,5\end{matrix}\right.\)

Vậy \(MIN_C=17,5\) khi \(x=\dfrac{3}{4}\) và y = -1,5

Bài 9:

a, \(D=5,5-\left|2x-1,5\right|\le5,5\)

Dấu " = " khi \(\left|2x-1,5\right|=0\Rightarrow x=0,75\)

Vậy \(MIN_D=5,5\) khi x = 0,75

b, c tương tự

9 tháng 12 2018

Giúp tôi với :

Cho biểu thức M=|x+1|+|x+2|+|x+3|+|x+4|+|x+5|

Tìm x để M đặt giá trị nhỏ nhất.

HELP MẸ.

18 tháng 8 2015

a) |x+1/2| +3/4 nhỏ nhất

=> |x+1/2| nhỏ nhất

=> |x+1/2|= 0

=> |x+1/2|+3/4 = 0+3/4 = 3/4

b) |2x+2| - 1 nhỏ nhất 

<=> |2x+2|  nhỏ nhất

<=> |2x + 2| = 0

2x + 2 = 0 

2x = 0 - 2 = -2

x = (-2) : 2 = -1

 

 

18 tháng 8 2015

a)\(\left|x+\frac{1}{2}\right|+\frac{3}{4}\)

\(\left|x+\frac{1}{2}\right|\ge0\Rightarrow\left|x+\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)

Vậy GTNN của |x+1/2|+3/4 là 3/4

khi\(\left|x+\frac{1}{2}\right|=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

b)\(\left|2x+2\right|\ge0\Rightarrow\left|2x+2\right|-1\ge-1\)

Vậy GTNN của |2x+2|-1 là -1

khi\(\left|2x+2\right|=0\Leftrightarrow2x+2=0\Rightarrow2x=-2\Rightarrow x=-1\)

c)câu c) là sao vậy???

16 tháng 3 2020

\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta thấy \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

\(\Rightarrow A\ge17,5\)

Dấu "=" xảy ra  \(\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

...
\(B=\left|x-2\right|+\left|x-6\right|+2017\)

\(=\left|x-2\right|+\left|6-x\right|+2017\)

Ta thấy \(\left|x-2\right|+\left|6-x\right|\ge\left|x-2+6-x\right|=4\)

\(\Rightarrow B\ge4+2017=2021\)

Dấu "=" xảy ra khi \(2\le x\le6\)

....

\(C=\left(2x+1\right)^{2020}-2019\)

Ta thấy \(\left(2x+1\right)^{2020}\ge0\)

\(\Rightarrow C=\left(2x+1\right)^{2020}-2019\ge-2019\)

Dấu "=" xảy ra khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

....

18 tháng 8 2020

Bài 2 : 

a) \(A=3,7+\left|4,3-x\right|\ge3,7\)

Min A = 3,7 \(\Leftrightarrow x=4,3\)

b) \(B=\left|3x+8,4\right|-14\ge-14\)

Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)

c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)

d) \(D=\left|x-2018\right|+\left|x-2017\right|\)

\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)

Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)

\(\Leftrightarrow2017\le x\le2018\)

24 tháng 8 2021

\(A=3,7+\left|4,3-x\right|\)

Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)

\(B=\left|3x+8,4\right|-14\)

Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)

\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

\(D=\left|x-2018\right|+\left|x-2017\right|\)

\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có

\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)

21 tháng 9 2021

\(a,A=\left|3,4-x\right|+1,7\ge1,7\)

Dấu \("="\Leftrightarrow3,4-x=0\Leftrightarrow x=3,4\)

\(c,C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}4x-3=0\\5y+7,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-\dfrac{3}{2}\end{matrix}\right.\)

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

7 tháng 10 2017

B=|2x-5|+3/4

Vì |2x-5|>=0

=>|2x5|+3/4>=0+3/4

=>B>3/4

Dấu "=" xảy ra khi:

2x-5=0(vì 0+3/4=3/4)

2x =0-5

2x= -5

x= -5:2

x= -2,5

Vậy GTNN của B=3/4 khi x= -2,5

7 tháng 10 2017

Bài 1 mất đề

Bài 2 :

Ta có :

\(C=5-3\left(2x-1\right)^2\)

\(\left(2x-1\right)^2\ge0\)

\(\Leftrightarrow3\left(2x-1\right)^2\ge0\)

\(\Leftrightarrow-3\left(2x-1\right)^2\le0\)

\(\Leftrightarrow5-3\left(2x-1\right)^2\le5\)

\(\Leftrightarrow C\le5\)

Dấu "=" xảy ra khi :

\(\left(2x-1\right)^2=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(MaxC=5\) khi \(x=\dfrac{1}{2}\)

b/ tương tự