K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

ĐKXĐ : \(9-x^2\ge0\)

<=> \(-3\le x\le3\)

Ta có \(\hept{\begin{cases}x^2\ge0\forall x\\\sqrt{9-x^2}\ge0\forall-3\le x\le3\end{cases}}\Leftrightarrow P=x^2\sqrt{9-x^2}\ge0\forall-3\le x\le3\)

Dấu "=" xảy ra  <=> 9 - x2 = 0 

<=> x = \(\pm3\)

Vậy Min A = 0 <=> x = \(\pm\)3

4 tháng 10 2021

\(P=x^2\sqrt{9-x^2}\)    ĐK : x \(\le\)

=>  \(P^2=x^4|9-x^2|\)

=>  \(p^2=x^4\left(9-x^2\right)\)

=>  ...............

em xin lỗi em làm được đến vậy thôi

NV
25 tháng 3 2022

Với \(x< 9\) biểu thức này chỉ có max, ko có min

Để có min thì cần \(x>9\)

25 tháng 3 2022

à đúng rùi ạ :(( em nhầm

19 tháng 10 2021

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{2}{\sqrt{x}-2}-\dfrac{4\sqrt{x}}{x-4}\)

\(=\dfrac{x-2\sqrt{x}+2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)

12 tháng 7 2017

ĐK  \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)

\(\Rightarrow0\le x< \frac{9}{4}\)

c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)

Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)

Vậy \(MinR=-3\Leftrightarrow x=0\)

9 tháng 11 2014

P=/ x+3/+/3-x/ >_ /x+3+3-x/

P >_6

min P là 6

dấu bằng xảy ra

( X+3)(3-X)>_ 0

-3_<X_<3

 

24 tháng 10 2016

\(M=\sqrt{x^2+6x+9}+\sqrt{x^2-4x+4}\)

\(=\sqrt{x^2+2.x.3+3^2}+\sqrt{x^2-2.2x+2^2}\)

\(=\sqrt{\left(x+3\right)^2}+\sqrt{\left(x-2\right)^2}\)

TH1 : \(x< -3;\)có :

\(M=-\left(x+3\right)+\left[-\left(x-2\right)\right]\)

\(=-3-x+2-x\)

\(=-1-2x>-1-2.\left(-3\right)=-1+6=5\)

TH2 : \(-3\le x\le2;\)có :

\(M=\left(x+3\right)+\left[-\left(x-2\right)\right]\)

\(=x+2+2-x=4\)

TH3: \(x>2\)

\(\Rightarrow M=\left(x+3\right)+\left(x-2\right)=2x+1\ge2.2+1=5\)

\(\Rightarrow Min_M=4\)

\(\Leftrightarrow-3\le x\le2\)

Vậy ...

Tại hạ chưa học lớp 9 nên làm cách quèn :)

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) a) Tính giá trị biểu thức A khi x = 9b) Tìm x để A = 3 c) Tìm giá trị nhỏ nhất của A 2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)b) Tìm x để B có giá trị âmc) Tìm giá trị nhỏ nhất của B 3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1 a) Tìm x để C = 7b) Tìm x để C...
Đọc tiếp

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) 

a) Tính giá trị biểu thức A khi x = 9

b) Tìm x để A = 3 

c) Tìm giá trị nhỏ nhất của A 

2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) 

a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)

b) Tìm x để B có giá trị âm

c) Tìm giá trị nhỏ nhất của B 

3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1 

a) Tìm x để C = 7

b) Tìm x để C > 6 

c) Tìm giá trị nhỏ nhất của C – \(\sqrt{x}\) 

4) Cho biểu thức D =  \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) với x > 0 ; x ≠ 1 

a) Tính giá trị biểu thức D biết \(x^2\) - 8x - 9 = 0 

b) Tìm x để D có giá trị là \(\dfrac{1}{2}\) 

c) Tìm x để D có giá trị nguyên

5) Cho biểu thức E = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) với x ≥ 0 ; x ≠ 1 ; x ≠ 9 

a) Tính giá trị biểu thức E tại x = 4 + \(2\sqrt{3}\) 

b) Tìm điều kiện của x để E < 1 

c) Tìm x nguyên để E có giá trị nguyên 

2

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

7 tháng 9 2021

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

AH
Akai Haruma
Giáo viên
5 tháng 2

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 9$

\(P=2A:B=\frac{2(\sqrt{x}+1)}{x-9}: \frac{2}{\sqrt{x}-3}=\frac{2(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{2}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(P=1-\frac{2}{\sqrt{x}+3}\)

Để $P$ nhỏ nhất thì $\frac{2}{\sqrt{x}+3}$ lớn nhất

$\Leftrightarrow \sqrt{x}+3$ nhỏ nhất

Với $x$ nguyên dương, $\sqrt{x}+3$ nhỏ nhất bằng $\sqrt{1}+3=4$ khi $x=1$

$\Rightarrow P_{\min}=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{1+1}{1+3}=\frac{1}{2}$

6 tháng 10 2020

đk: \(x>0;x\ne9\)

a) \(P=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

b) Với x=0,25 ta có: \(P=\frac{\left(\sqrt{0,25}-1\right)^2}{\sqrt{0,25}}=0,5\)

c) \(P=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\sqrt{x}+\frac{1}{\sqrt{x}}-2\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}-2=2-2=0\)

Dấu '=' xảy ra khi x=1 (tmdk). Vậy Min p =0 khi và chỉ khi x=1

Chọn A