Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\sqrt{x^2+6x+9}+\sqrt{x^2-4x+4}\)
\(=\sqrt{x^2+2.x.3+3^2}+\sqrt{x^2-2.2x+2^2}\)
\(=\sqrt{\left(x+3\right)^2}+\sqrt{\left(x-2\right)^2}\)
TH1 : \(x< -3;\)có :
\(M=-\left(x+3\right)+\left[-\left(x-2\right)\right]\)
\(=-3-x+2-x\)
\(=-1-2x>-1-2.\left(-3\right)=-1+6=5\)
TH2 : \(-3\le x\le2;\)có :
\(M=\left(x+3\right)+\left[-\left(x-2\right)\right]\)
\(=x+2+2-x=4\)
TH3: \(x>2\)
\(\Rightarrow M=\left(x+3\right)+\left(x-2\right)=2x+1\ge2.2+1=5\)
\(\Rightarrow Min_M=4\)
\(\Leftrightarrow-3\le x\le2\)
Vậy ...
Tại hạ chưa học lớp 9 nên làm cách quèn :)
\(\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x+2\right|+\left|x-3\right|\)
\(=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)
Dấu "=" xảy ra khi:
\(\left(x+2\right)\left(3-x\right)\ge0\)
\(\Leftrightarrow x+2\ge0\text{ và }3-x\ge0\text{ hoặc }x+2\le0\text{ và }3-x\le0\)
\(\Leftrightarrow x\ge-2\text{ và }x\le3\text{ hoặc }x\le-2\text{ và }x\ge3\left(loại\right)\)
Vậy giá trị nhỏ nhất của biểu thức là 5 tại \(-2\le x\le3\)
\(\left[3\left(x-1\right)^2+6\right]\left(3+6\right)\ge\left[3\left(x-1\right)+6\right]^2\)
\(\Leftrightarrow3x^2-6x+9\ge x+5\)
\(\Rightarrow A\ge x^4-8x^2+2024=\left(x^2-4\right)^2+2008\ge2008\)
Dấu "=" xảy ra khi \(x=2\)
Có phát hiện ra lỗi sai trong bài làm trên ko? :D
\(A=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)
= / x+2/ + / x -3/ = /x+2/ + / 3-x / >/ /x+2+3-x/ =5
A min = 5 khi -2 </ x </ 3
\(a,A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}.\)
\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}.\)
\(A=\left(x-3\right)-\left(x+3\right)\)
\(b,\) Ta có : \(A=1=\left(x-3\right)-\left(x+3\right)\)
\(\Leftrightarrow1=x-3-x-3\Leftrightarrow1=-6\left(ko\right)tm\)
Vậy ko có giá trị của x.
=\(\left|x-3\right|-\left|x+3\right|\)
*x>0
=x-3-x+3
=0
*x<0
=3-x-3+x
=0
P=/ x+3/+/3-x/ >_ /x+3+3-x/
P >_6
min P là 6
dấu bằng xảy ra
( X+3)(3-X)>_ 0
-3_<X_<3