Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
Bài 1:
a: \(M=x^2-10x+3\)
\(=x^2-10x+25-22\)
\(=\left(x^2-10x+25\right)-22\)
\(=\left(x-5\right)^2-22>=-22\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
b: \(N=x^2-x+2\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>x=1/2
c: \(P=3x^2-12x\)
\(=3\left(x^2-4x\right)\)
\(=3\left(x^2-4x+4-4\right)\)
\(=3\left(x-2\right)^2-12>=-12\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
Ta có: \(M=x^2+4x+5=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge1\)
Dấu "=" xảy ra khi : \(\left(x+2\right)^2=0\Rightarrow x+2=0\Rightarrow x=-2\)
Vậy \(M_{min}=1\) khi \(x=-2\)
Ta có :
M = x2+4x+5 = (x2 + 2.2.x + 22) + 1
= (x + 2)2 + 1
Do (x+2)2 lớn hơn hoặc bằng 0 => M lớn hơn hoặc bằng 1 => M đạt giá trị nhỏ nhất <=> M = 1
Khi đó : (x + 2)2 + 1 = 1 <=> x + 2 = 0 <=> x = -2
Vậy giá trị nhỏ nhất của M là 0 tại x = -2
a) \(A=x^2-4x+5=\left(x-2\right)^2+1\ge1>0\forall x\)
b) \(A=x^2-4x+5=\left(x-2\right)^2+1\ge1\)
\(minA=1\Leftrightarrow x=2\)
a: Ta có: \(A=x^2-4x+5\)
\(=x^2-4x+4+1\)
\(=\left(x-2\right)^2+1>0\forall x\)
b: \(A_{min}=1\) khi x=2
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Ta có C=x^2-4x-4 / x^2-4x+5
=x^2-4x+4-8/x^2-4x+4+1
=(x^2-4x+4)-8 / (x^2-4x+4)+1
=(x-2)^2 -8/ (x-2)^2 +1
=Vì (x-2)^2 >hoặc = 0
=>(x-2)^2-8 > hoặc = -8 và (x-2)^2+1> hoặc =1 (với mọi x)
Dấu ''='' xảy ra <=> (x-2)^2 =0
<=>x - 2 = 0
<=>x =2
<=> Giá trị nhỏ nhất của biểu thức C là -8/1=-8
Vậy giá trị nhỏ nhất của biểu thức C là minC= - 8 khi x=2
Chúc bạn làm bài tốt ! Mình ko chắc câu trả lời của mình đúng đâu , nhưng cũng ko phải là sai
`A=x^2-4x+1/(x^2-4x+4)+5`
`=x^2-4x+4+1/(x^2-4x+4)+1`
Áp dụng BĐT cosi với 2 số dương ta có:
`x^2-4x+4+1/(x^2-4x+4)=(x-2)^2+1/(x-2)^2>=2`
`=>x^2-4x+4+1/(x^2-4x+4)+1>=3`
Dấu "=" xảy ra khi `(x-2)^2=1/(x-2)^2`
`<=>(x-2)^4=1`
`<=>` $\left[ \begin{array}{l}x=3\\x=1\end{array} \right.$
Vậy `min_A=3<=>` $\left[ \begin{array}{l}x=3\\x=1\end{array} \right.$
nếu x=1 thì m=x^2+4x+5
m=1^2+4x1+5
m=10
m = x2 + 4x + 5 = (x2 + 4x + 4) + 1 = (x + 2)2 + 1\(\ge1\)
Vậy GTNN là 1 đạt được khi x = - 2