K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: -1<=sin x<=1

=>-1+3<=sin x+3<=1+3

=>2<=sinx+3<=4

=>\(\dfrac{1}{2}>=\dfrac{1}{sinx+3}>=\dfrac{1}{4}\)

=>\(2>=\dfrac{4}{sinx+3}>=1\)

=>\(-2< =-\dfrac{4}{sinx+3}< =-1\)

=>-2+3<=y<=-1+3

=>1<=y<=2

y=1 khi \(\dfrac{-4}{sinx+3}+3=1\)

=>\(\dfrac{-4}{sinx+3}=-2\)

=>sinx+3=2

=>sin x=-1

=>x=-pi/2+k2pi

y=3 khi sin x=1

=>x=pi/2+k2pi

b: -1<=cosx<=1

=>4>=-4cosx>=-4

=>9>=-4cosx+5>=1

=>2/9<=2/5-4cosx<=2

=>2/9<=y<=2

\(y_{min}=\dfrac{2}{9}\) khi \(\dfrac{2}{5-4cosx}=\dfrac{2}{9}\)

=>\(5-4\cdot cosx=9\)

=>4*cosx=4

=>cosx=1

=>x=k2pi

y max khi cosx=-1

=>x=pi+k2pi

c: \(0< =cos^2x< =1\)

=>\(0< =2\cdot cos^2x< =2\)

=>\(-1< =y< =2\)

y min=-1 khi cos^2x=0

=>x=pi/2+kpi

y max=2 khi cos^2x=1

=>sin^2x=0

=>x=kpi

 

7 tháng 1 2018

-1 ≥ 3 – 4sinx ≥ 7

NV
11 tháng 9 2021

1. Không dịch được đề

2.

\(-1\le cos2x\le1\Rightarrow1\le y\le3\)

3.

a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)

\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

b.

\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)

\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)

\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

4.

\(y=\left(tanx-1\right)^2+2\ge2\)

\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)

17 tháng 3 2019

Do đó giá trị nhỏ nhất và giá trị nhỏ nhất của hàm số đã cho là 4 2 - 1  và 7

Đáp án D

24 tháng 5 2018

Đáp án A

NV
19 tháng 9 2021

Đặt \(sinx=t\in\left[-1;1\right]\)

\(y=f\left(t\right)=t^2+2t\)

Xét hàm \(y=f\left(t\right)=t^2+2t\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=-1\in\left[-1;1\right]\)

\(f\left(-1\right)=-1\) ; \(f\left(1\right)=3\)

\(\Rightarrow y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)

\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

NV
15 tháng 9 2021

\(-1\le sinx\le1\Rightarrow2.\left(-1\right)-4\le y\le2.1-4\)

\(\Rightarrow-6\le y\le-2\)

\(y_{min}=-6\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)

\(y_{max}=1\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)