Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left|2x+1\right|+\left|-2y-1\right|\ge\left|2x+1-2y-1\right|=2\left|x-y\right|=4\)
\(C_{min}=4\)
a) Ta có : | 1/2 - x | >= 0 với mọi x
=> 0,6 + | 1/2 - x | >= 0,6 với mọi x
Dấu " = " xảy ra <=> 1/2 - x = 0 => x = 1/2
Vậy,_
b) Ta có : | 2y + 2/3 | >= với mọi x
=> 2/3 - | 2y + 2/3 | < 2/3 với mọi x
Dấu " = " xảy ra <=> 2y + 2/3 = 0 => y = -1/3
Vậy,_
a, Do \(|\frac{1}{2}-x|\)\(\ge\)\(0\)với mọi x \(\Rightarrow\)\(A\ge0,6\)
Dấu bằng xảy ra \(\Leftrightarrow\) \(|\frac{1}{2}-x|=0\Leftrightarrow\frac{1}{2}-x=0\Leftrightarrow x=\frac{1}{2}\)
Vậy GTNN \(A=0,6\Leftrightarrow x=\frac{1}{2}\)
b, Do \(|2y+\frac{2}{3}|\ge0\)với mọi y \(\Rightarrow\) \(B\le\frac{2}{3}\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(|2y+\frac{2}{3}|=0\Leftrightarrow2y+\frac{2}{3}=0\Leftrightarrow2y=\frac{-2}{3}\Leftrightarrow y=\frac{-1}{3}\)
Vậy GTLN \(B=\frac{2}{3}\)\(\Leftrightarrow y=\frac{-1}{3}\)
b. + Vì \(|6-2x|\ge0\)\(\forall x\)
\(\Rightarrow\)\(|6-2x|-5\ge0-5\)\(\forall x\)
\(\Rightarrow\)B\(\ge\)-5 \(\forall x\)
Vậy GTNN của B= -5 \(\Leftrightarrow\)6-2x=0
\(\Leftrightarrow\)2x=6
\(\Leftrightarrow\)x=3
+ Vì -\(|6-2x|\le0\forall x\)
\(\Rightarrow\)\(|6-2x|-5\le0+5\forall x\)
\(\Rightarrow B\le5\forall x\)
Vậy GTLN của B= 5 \(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
c,+ Vì \(|x+1|\ge0\forall x\)
\(\Rightarrow\)\(3-|x+1|\ge3-0\forall x\)
\(\Rightarrow C\ge3\forall x\)
Vậy GTNN của C=3 \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
+ Vì \(-|x+1|\le0\forall x\)
\(\Rightarrow3-|x+1|\le3+0\forall x\)
\(\Rightarrow C\le3\forall x\)
Vậy GTLN của \(C=3\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Mình chỉ làm vậy thôi nhé!