K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B=|x-2011|+|x-400|+|x-1|

=|x-2011|+|x-400|+|1-x|\(\ge\)|x-2011+1-x|+|x-400|\(\ge\)2010+|x-400|

Dấu     "="xảy ra khi

\(\hept{\begin{cases}1\le x\le2011\\x-400=0\end{cases}}\)

Vậy Bmin=2010 <=> x=400

Chúc hok tốt

15 tháng 10 2018

\(A=|x+100|+|x+200|+|x+300|+|x+400|+2011\)

\(\ge|x+100+x+200+x+300+x+400|+2011\)

\(=|4x+1000|+2011\)

Dấu bằng xảy ra khi và chỉ khi \(4x+1000=0\Leftrightarrow x=-250\)

=> Min A= 2011

15 tháng 10 2018

\(\left|x+100\right|+\left|x+200\right|+\left|x+300\right|+\left|x+400\right|+2011\ge\left|x+100+x+200+x+300+x+400\right|+2011=\left|4x+\left(100+200+300+400\right)\right|+2011\)\(\Rightarrow\left|x+100\right|+\left|x+200\right|+\left|x+300\right|+\left|x+400\right|\ge\left|4x+1000\right|+2011\)

\(\Rightarrow A_{Min}=2011\Leftrightarrow\left|4x+1000\right|=0\Leftrightarrow4x+1000=0\Leftrightarrow4x=-1000\Leftrightarrow x=-250\)

5 tháng 11 2016

A = / x - 2011 / + / x - 1 /

=> A = / x - 2011 / + / 1 - x /

Áp dụng công thức / a / + / b / > hoặc = / a + b /

=> A = / x - 2011 / + / 1 - x / > hoặc = / x - 2011 + 1 - x /

=> A = / x - 2011 / + / 1 - x / > hoặc = / -2010 /

=> A = / x - 2011 / + / 1 - x / > hoặc = 2010

Dấu bằng xảy ra khi ( x - 2011 ).( 1 - x ) > hoặc = 0

=>( x - 2011 ).( x - 1 ) < hoặc = 0

Do x - 2011 < x - 1

=> x - 2011 < hoặc = 0    ;     x - 1  > hoặc = 0

=> x < hoặc = 2011   ;   x > hoặc = 1

=> 1 < hoặc = x < hoặc = 2011

3 tháng 2 2017

vì A =/x-2011/+/x-1/ mà A nhỏ nhất nên =>/x-2011/+/x-1/ cũng nhỏ nhất

vì /x-2011/ và /x-1/ luôn luôn là số tự nhiên

mà /x-2011/ và /x-1/ nhỏ nhất nên => /x-2011/ và /x-1/ =0

0+0=0

=>A =0

30 tháng 11 2015

ta có

A=/x-2011/ + /x-1/=/x-2011/+/1-x/

áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/

=>A =/x-2011/+/1-x/\(\ge\)   /x-2011+1-x/=2010

30 tháng 4 2016

ta thay M=(2011-x-1)/(2011-x)                  =1-1/(2011-x)                                         de M nho nhat thi 1/(2011-x) lon nhat suyra 2011-x nho nhat   va nguyen duong suy ra x=2010      suy ra gia tri nho nhat cua M=0                  

5 tháng 12 2016

a)\(A=\left|x-2012\right|+\left|2011-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2012\right|+\left|2011-x\right|\ge\left|x-2012+2011-x\right|=1\)

Dấu "=" khi \(2011\le x\le2012\)

Vậy \(Min_A=1\) khi \(2011\le x\le2012\)

8 tháng 8 2019

\(Q=\left|x-2010\right|+\left(y+2011\right)^{2010}+2011\)

Ta có:\(\hept{\begin{cases}\left|x-2010\right|\ge0\\\left(y+2011\right)^{2010}\ge0\end{cases}}\)

Nên \(\left|x-2010\right|+\left(y+2011\right)^{2010}+2011\ge2011\)

Vậy \(Q_{min}=2011\Leftrightarrow\hept{\begin{cases}x-2010=0\\y+2011=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2010\\y=-2011\end{cases}}\)

3 tháng 10 2021

ta thấy: \(\left|x-2010\right|\ge0\)\(\left(y+2011\right)^{2020}\ge0\)

\(\Rightarrow\left|x-2010\right|+\left(y+2011\right)^{2020}+2011\ge2011\)

dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2010=0\\y+2011=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)

vậy MinA=2011 khi\(\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)

\(A=\left|x-2011\right|+\left|x-200\right|\)

\(=\left|2011-x\right|+\left|x-200\right|\ge\left|2011-x+x-200\right|=1811\)

Vậy \(MinA=1811\Leftrightarrow\left(2011-x\right)\left(x-200\right)\ge0\Leftrightarrow200\le x\le2011\)

19 tháng 3 2016

2000 ớ pn theo mik x=4000