Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn có thể gõ dấu gttd bằng cách giữ phím Shift và nhấn phím bên trái phím xoá đó
a) Ta có:
\(\left|3x-1\right|\ge0\forall x\)
=> GTNN của biểu thức đã cho là 0, đạt được khi:
3x -1 = 0
3x = 1
x = -1/3
b) Ta có:
\(4\left|3+2x\right|\ge0\forall x\)
=> \(4\left|3+2x\right|+1\ge1\forall x\)
=> GTNN của biểu thức đã cho là 1, đạt được khi:
4|3+2x|=0
|3+2x|=0
3+2x = 0
2x = -3
x = -3/2
Ủa mấy cái này tưởng mấy em được học rồi nhỉ?
a, \(|3x-4|+|4y+1|=0\)
\(\Rightarrow\hept{\begin{cases}|3x-4|=0\\|4y+1|=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-4=0\\4y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{4}\end{cases}}}\)
b, Lập bảng xét dấu giá trị tuyệt đối
\(x\) \(-\frac{5}{2}\) \(\frac{1}{3}\)
\(2x+5\) \(-5-2x\) \(0\) \(2x+5\) \(||\) \(2x+5\)
\(3x-1\) \(1-3x\) \(||\)\(1-3x\) \(0\)\(3x-1\)
\(VT\) \(||\) \(||\)
TH1: \(x< -\frac{5}{2}\)\(\Rightarrow\hept{\begin{cases}|2x+5|=-5-2x\\|3x-1|=1-3x\end{cases}}\)
\(\Rightarrow-5-2x+1-3x=3\)\(\Leftrightarrow-4-5x=3\Leftrightarrow x=-\frac{7}{5}\left(L\right)\)
TH2: \(-\frac{5}{2}\le x\le\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}|2x+5|=2x+5\\|3x-1|=1-3x\end{cases}}\)
\(\Rightarrow2x+5+1-3x=3\)\(\Leftrightarrow6-x=3\Leftrightarrow x=3\left(L\right)\)
TH3: \(x>\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}2x+5|=2x+5\\|3x-1|=3x-1\end{cases}}\)
\(\Rightarrow2x+5+3x-1=3\)\(\Leftrightarrow5x+4=3\Leftrightarrow5x=-1\Leftrightarrow x=-\frac{1}{5}\left(L\right)\)
Vậy PT đã cho vô nghiệm.
P/S: Không hiểu ở đâu thì nhắn chị nhé.