Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(8x-1)(x+7)-(x-2)(8x+5)-11(6x+1)$
$=8x^2+55x-7-(8x^2-11x-10)-(66x-11)$
$=8x^2+55x-7-8x^2+11x+10-66x+11$
$=(8x^2-8x^2)+(55x+11x-66x)+(-7+10+11)=14$ không phụ thuộc vào giá trị của biến $x$ (đpcm)
\(9a^2+b^2-6a+2b+5\)
\(=\left[\left(3a\right)^2-2.3.a+1\right]+\left(b^2+2b+1\right)+3\)
\(=\left(3a-1\right)^2+\left(b+1\right)^2+3\)
Ta thấy: \(\left(3a-1\right)^2\ge0;\left(b+1\right)^2\ge0\)\(\forall a;b\)
\(\Rightarrow\left(3a-1\right)^2+\left(b+1\right)^2+3>0\forall a;b\)
\(\Rightarrow9a^2+b^2-6a+2b+5>0\forall a;b\)
Đề thế này hả e
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\)
\(\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Leftrightarrow6x-3y=2x+y\)
\(\Leftrightarrow4x=4y\)
\(\Leftrightarrow x=y\)
Vậy.....
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Leftrightarrow6x-3y=2x+2y\)
\(\Leftrightarrow4x=5y\)
\(\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)
Vậy....
a làm lại nhé, nãy sai
Tính giá trị nhỏ nhất:
\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)
Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$
Vậy $A_{\min}=-3$
Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$
$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$
Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$
$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$
$=(x^2+5x)^2-36\geq 0-36=-36$
Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Tìm giá trị lớn nhất:
$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$
Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$
Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$
$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$
Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$
\(A=2x^2-8x+1\)
\(A=2\left(x^2-4x+\frac{1}{2}\right)\)
\(A=2\left[x^2-2.2x+4-4+\frac{1}{2}\right]\)
\(A=2\left[\left(x-2\right)^2-\frac{7}{2}\right]\)
\(A=2\left(x-2\right)^2-7\ge7\forall x\)
dấu " = " xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
vậy MIN A = 7 khi \(x=2\)
\(B=-5x^2-4x+1\)
\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)
\(B=-5\left(x^2+2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}-\frac{1}{5}\right)\)
\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)
\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\forall x\)
dấu \("="\) xảy ra khi \(x+\frac{2}{5}=0\Leftrightarrow x=\frac{-2}{5}\)
vậy MIn B = \(\frac{9}{5}\) khi \(x=\frac{-2}{5}\)
còn lại làm tương tự nhé
Ta có :
\(A=2x^2-8x+1\)
\(A=\left(x^2-4x+4\right)+\left(x^2-4x+4\right)-7\)
\(A=2\left(x^2-4x+4\right)-7\)
\(A=2\left(x-2\right)^2-7\ge-7\)
Dấu "=" xảy ra khi và chỉ khi \(2\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTNN của \(A\) là \(-7\) khi \(x=2\)
Chúc bạn học tốt ~