Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ : \(\frac{a\left(3x-1\right)}{5}-\frac{6x-17}{4}+\frac{3x+2}{10}=0\)
\(\Leftrightarrow\frac{4a\left(3x-1\right)}{20}-\frac{30x-85}{20}+\frac{6x+4}{20}=0\)
\(\Leftrightarrow\frac{12ax-4a-30x+85+6x+4}{20}=0\)
\(\Leftrightarrow12ax-4a-24x+89=0\)
\(\Leftrightarrow12x\left(a-2\right)+89-4a=0\)
\(\Leftrightarrow x=\frac{4a-89}{12\left(a-2\right)}\)
\(\Rightarrow\)ĐỂ PT VÔ NGHIỆM KHI VÀ CHỈ KHI \(a-2=0\Leftrightarrow a=2\)
vậy
\(\Leftrightarrow4a\left(3x-1\right)-5\left(6x-17\right)+6x+4=0\)
\(\Leftrightarrow4a\left(3x-1\right)-30x+85+6x+4=0\)
\(\Leftrightarrow12ax-4a-24x+89=0\)
\(\Leftrightarrow x\left(12a-24\right)=4a-89\)
Để phương trình vô nghiệm thì 12a-24=0
hay a=2
Gọi 3 số lần lượt là : (x - 1) ; x ; (x + 1)
Có :
(x - 1)3 + x3 + (x + 1)3
= (x3 - 3.x2.1 + 3.x.12 - 1) + x3 + (x3 + 3.x2.1 + 3x.12 + 1)
= x3 - 3.x2.1 + 3.x.12 - 1 + x3 + x3 + 3.x2.1 + 3x.12 + 1
= 3x3 + 6x
= 3x3 - 3x + 9x
= 3x(x2 - 1) + 9x
= 3x.(x - 1)(x + 1) + 9x
Xét (x - 1).x.(x + 1) là tích 3 số nguyên liên tiếp
=> (x - 1).x.(x + 1) \(⋮\) 3
=> 3.(x - 1).x.(x + 1) \(⋮\) 9
Mà 9x \(⋮\) 9
=> (x - 1)3 + x3 + (x + 1)3 \(⋮\) 9
\(A=2x^2-8x+1\)
\(A=2\left(x^2-4x+\frac{1}{2}\right)\)
\(A=2\left[x^2-2.2x+4-4+\frac{1}{2}\right]\)
\(A=2\left[\left(x-2\right)^2-\frac{7}{2}\right]\)
\(A=2\left(x-2\right)^2-7\ge7\forall x\)
dấu " = " xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
vậy MIN A = 7 khi \(x=2\)
\(B=-5x^2-4x+1\)
\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)
\(B=-5\left(x^2+2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}-\frac{1}{5}\right)\)
\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)
\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\forall x\)
dấu \("="\) xảy ra khi \(x+\frac{2}{5}=0\Leftrightarrow x=\frac{-2}{5}\)
vậy MIn B = \(\frac{9}{5}\) khi \(x=\frac{-2}{5}\)
còn lại làm tương tự nhé
Ta có :
\(A=2x^2-8x+1\)
\(A=\left(x^2-4x+4\right)+\left(x^2-4x+4\right)-7\)
\(A=2\left(x^2-4x+4\right)-7\)
\(A=2\left(x-2\right)^2-7\ge-7\)
Dấu "=" xảy ra khi và chỉ khi \(2\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTNN của \(A\) là \(-7\) khi \(x=2\)
Chúc bạn học tốt ~