K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

`A=(9(x-2)+18)/(2-x)+2/x`

`=-9+18/(2-x)+2/x`

`=-9+2(9/(2-x)+1/x)`

Áp dụng bđt cosi-schwarts ta có:

`9/(2-x)+1/x>=(3+1)^2/(2-x+x)=8`

`=>A>=16-9=7`

Dấu "=" xảy ra khi `3/(2-x)=1/x`

`<=>3x=2-x`

`<=>4x=2<=>x=1/2(tm)`

b

`y=x/(1-x)+5/x`

`=(x-1+1)/(1-x)+5/x`

`=1/(1-x)+5/x-1`

Áp dụng cosi-schwarts ta có:

`1/(1-x)+5/x>=(1+sqrt5)^2/(1-x+x)=(1+sqrt5)^2=6+2sqrt5`

`=>y>=5+2sqrt5`

Dấu "=" xảy ra khi `1/(1-x)=sqrt5/x`

`<=>x=sqrt5-sqrt5x`

`<=>x(1+sqrt5)=sqrt5`

`<=>x=sqrt5/(sqrt5+1)=(sqrt5(sqrt5-1))/(5-1)=(5-sqrt5)/4`

`c)C=2/(1-x)+1/x`

Áp dụng bđt cosi schwarts ta có:

`C>=(sqrt2+1)^2/(1-x+x)=3+2sqrt2`

Dấu "=" xảy ra khi `sqrt2/(1-x)=1/x`

`<=>sqrt2x=1-x`

`<=>x(sqrt2+1)=1`

`<=>x=1/(sqrt2+1)=(sqrt2-1)/(2-1)=sqrt2-1`

27 tháng 6 2021

cho hỏi là câu a sao lại thế ở mấy dòng đầu ạ

NV
2 tháng 7 2021

a.

\(A=x^2+\dfrac{2021}{x}=x^2+\dfrac{2021}{2x}+\dfrac{2021}{2x}\ge3\sqrt[3]{\dfrac{2021^2}{4x^2}}=3\sqrt[3]{\dfrac{2021^2}{4}}\)

Dấu "=" xảy ra khi \(x=\sqrt[3]{\dfrac{2021}{3}}\)

b.

\(B=4\left(x-1\right)+\dfrac{25}{x-1}+4\ge2\sqrt{\dfrac{100\left(x-1\right)}{x-1}}+4=24\)

Dấu "=" xảy ra khi \(x=\dfrac{7}{2}\)

c.

\(C=3x+\dfrac{16}{x^3}=x+x+x+\dfrac{16}{x^3}\ge4\sqrt[4]{\dfrac{16x^3}{x^3}}=8\)

\(A_{min}=8\) khi \(x=2\)

NV
2 tháng 7 2021

d.

\(D=x+\dfrac{1}{x}=\left(\dfrac{x}{4}+\dfrac{1}{x}\right)+\dfrac{3}{4}.x\ge2\sqrt{\dfrac{x}{4x}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(x=2\)

e.

\(E=\dfrac{9\left(x-2\right)+18}{2-x}+\dfrac{2}{x}=2\left(\dfrac{1}{x}+\dfrac{9}{2-x}\right)-9\ge\dfrac{2.\left(1+3\right)^2}{x+2-x}-9=7\)

\(E_{min}=7\) khi \(x=\dfrac{1}{5}\)

f.

\(F=\dfrac{3}{1-x}+\dfrac{4}{x}\ge\dfrac{\left(\sqrt{3}+2\right)^2}{1-x+x}=7+4\sqrt{3}\)

Dấu "=" xảy ra khi \(x=4-2\sqrt{3}\)

17 tháng 10 2023

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{5}{4xy}\)

\(\ge\dfrac{4}{x^2+y^2+2xy}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{5}{4.\dfrac{\left(x+y\right)^2}{4}}\)

\(\ge\dfrac{4}{1^2}+2+\dfrac{5}{1^2}\) (do \(x+y\le1\))

\(=11\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Vậy GTNN của A là 11.

Bài 1: 

a: Ta có: \(x^2-2\sqrt{5}x+5=0\)

\(\Leftrightarrow x-\sqrt{5}=0\)

hay \(x=\sqrt{5}\)

b: Ta có: \(\sqrt{x+3}=1\)

\(\Leftrightarrow x+3=1\)

hay x=-2

22 tháng 10 2023

10 tháng 7 2021

a)

\(P=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-4\right)+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{3x-2\sqrt{x}-1-3\sqrt{x}+4+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{3\left(x+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{x+1}{3\sqrt{x}-1}\)

a: Ta có: \(A=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2021

Lời giải:
a.

\(A=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}\)

\(=\sqrt{x}(\sqrt{x}-1)-(2\sqrt{x}+1)+2(\sqrt{x}+1)\)

\(=x-\sqrt{x}+1\)

b.

\(A=x-\sqrt{x}+1=(\sqrt{x}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)

Vậy $A_{\min}=\frac{3}{4}$ khi $\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}$

NV
24 tháng 12 2022

\(A=\dfrac{x-4+5}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{5}{\sqrt{x}-2}\)

\(=\sqrt{x}-2+\dfrac{5}{\sqrt{x}-2}+4\ge2\sqrt{\dfrac{5\left(\sqrt{x}-2\right)}{\sqrt{x}-2}}+4=4+2\sqrt{5}\)

\(A_{min}=4+2\sqrt{5}\) khi \(9+4\sqrt{5}\)

b.

Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{l}{z}\right)\Rightarrow xyz=1\)

\(B=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(B_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\Rightarrow a=b=c=1\)

24 tháng 12 2022

khi 9+4\(\sqrt{5}\) là từ đâu ạ

6 tháng 12 2023

P = (\(\dfrac{1}{\sqrt{x}-1}\) - \(\dfrac{1}{\sqrt{x}}\)) : (\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)) với  0 < \(x\) ≠ 1; 4

P = \(\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): (\(\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right).\left(\sqrt{x-2}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\))

P = \(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\)\(\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)

P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) : \(\dfrac{3}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)

P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) \(\times\) \(\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\)

P = \(\dfrac{\sqrt{x}-2}{3.\sqrt{x}}\)

P = \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\) 

6 tháng 12 2023

b, P = \(\dfrac{1}{4}\)

⇒ \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\)  = \(\dfrac{1}{4}\)

⇒4\(x\) - 8\(\sqrt{x}\) = 3\(x\)

⇒ 4\(x\) - 8\(\sqrt{x}\) - 3\(x\) = 0

     \(x\) - 8\(\sqrt{x}\)   = 0

      \(\sqrt{x}\).(\(\sqrt{x}\) - 8) = 0

       \(\left[{}\begin{matrix}x=0\\\sqrt{x}=8\end{matrix}\right.\)

      \(\left[{}\begin{matrix}x=0\\x=64\end{matrix}\right.\)

      \(x=0\) (loại)

      \(x\) = 64

a: \(A=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)