K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

\(M=\left(a^2+2ab+b^2-6a-6b+9\right)+\left(b^2-2b+1\right)+2017\)

\(M=\left(a+b-3\right)^2+\left(b-1\right)^2+2017\ge2017\Rightarrow M_{min}=2017\)

26 tháng 12 2016

ngonhuminh giảng cho minh cách ghep BP khi nhìn đa thức rất lùng tùng với, 

28 tháng 8 2017

\(B=2a^2+2b^2+2ab-10a-8b+19\)

\(B=\left(a^2+2ab+b^2\right)+\left(a^2-10a+25\right)+\left(b^2-8b+16\right)-22\)

\(B=\left(a+b\right)^2+\left(a-5\right)^2+\left(b-4\right)^2-22\ge22\)

Vậy MIN B=22 <=> a=5 b=4

14 tháng 5 2017

1, hiển nhiên a+b>0 

có a^2+2ab+2b^2-2b=8=>(a+b)^2=8-(b^2-2b)=9-(b-1)^2 </ 9 => a+b </ 3 

22 tháng 8 2021

\(A=x^2+y^2+z^2-yz-4x-3y+2027\)

\(\Rightarrow4A=4x^2+4y^2+4z^2-4yz-16x-12y+8108=4x^2-16x+16+3y^2+12y+12+y^2-4yz+4z^2+8080=4\left(x-2\right)^2+3\left(y+2\right)^2+\left(y-2z\right)^2+8080\)

Vì \(4\left(x-2\right)^2\ge0\)

    \(3\left(y+2\right)^2\ge0\)

     \(\left(y-2z\right)^2\ge0\)

\(\Rightarrow4A\ge8080\Rightarrow A\ge2020\)

\(ĐTXR\Leftrightarrow x=2,y=-2,z=-1\)

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

A.

$a^2+4b^2+9c^2=2ab+6bc+3ac$

$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$

$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$

$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$

$\Rightarrow a-2b=a-3c=2b-3c=0$

$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

B.

$x^2+2xy+6x+6y+2y^2+8=0$

$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$

$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$

$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)

$\Rightarrow -1\leq x+y+3\leq 1$

$\Rightarrow -4\leq x+y\leq -2$

$\Rightarrow 2020\leq x+y+2024\leq 2022$

$\Rightarrow A_{\min}=2020; A_{\max}=2022$

11 tháng 4 2020

C=a2-4ab+4b2+b2-2b+1-7=(a-2b)2+(b-1)2-7 > hoặc =-7

dấu = xảy ra khi a-2b=0      

                            b-1=0

<=>a=2;b=1

..................................

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Đề thiếu dữ kiện để tính gtnn. Bạn coi lại.

4 tháng 4 2022

\(A=2\left(a^2+b^2\right)=2\left[\left(b+1\right)^2+b^2\right]=2\left(2b^2+2b+1\right)=4\left[b^2+b+\dfrac{1}{4}\right]+1=4\left(b+\dfrac{1}{2}\right)^2+1\ge1\)

 " = " \(\Leftrightarrow b=-\dfrac{1}{2};a=\dfrac{1}{2}\)