Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
Ta có: \(C=\left|2x-7\right|+\left|2x-5\right|+18\)
\(=\left|2x-7\right|+\left|5-2x\right|+18\ge\left|2x-7+5-2x\right|+18\)
\(\Leftrightarrow C\ge20\)
Vậy: Giá trị nhỏ nhất của C là 20 khi \(x=\dfrac{7}{2}\)
Ta có:\(C=\left|2x-7\right|+\left|2x-5\right|=-18\)
\(\left\{{}\begin{matrix}\left|2x-7\right|>0\\\left|2x-5\right|>0\end{matrix}\right.\)
mà \(\left|2x-7\right|+\left|2x-5\right|=-18\)
\(\Rightarrow\)Cmin\(\Leftrightarrow\)2x-7=0 suy ra x=7/2
2x-5=0 suy ra x=5/2
a) \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)
Vậy giá trị nhỏ nhất \(=-1\)
b) \(\left(x-2\right)^2+5\ge5\)
\(\Leftrightarrow\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)
\(\Leftrightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)
Vậy giá trị lớn nhất \(=\frac{3}{5}\)
Ta có: |2x - 5| \(\ge\)0 \(\forall\)x
=> |2x - 5| + 1,(3) \(\ge\)1,(3)
hay |2x - 5| + 4/3 \(\ge\)4/3
Dấu "=" xảy ra <=> 2x - 5 = 0 <=> x = 5/2
Vậy Min F = 4/3 <=> x = 5/2
Ta có: G = |x - 3| + |x + 3/2|
G = |3 - x| + |x + 3/2| \(\ge\)|3 - x + x + 3/2| = |3/2| = 3/2
Dấu "=" xảy ra <=> (3 - x)(x + 3/2) \(\ge\)0
<=> -3/2 \(\le\)x \(\le\)3
Vậy MinG = 3/2 <=> -3/2 \(\le\)x \(\le\)3
Làm lại cho Edogawa Conan
\(G=\left|x-3\right|+\left|x+\frac{3}{2}\right|\)
\(G=\left|3-x\right|+\left|x+\frac{3}{2}\right|\ge\left|\left(3-x\right)+\left(x+\frac{3}{2}\right)\right|\)
\(=\frac{9}{2}\)
Vậy \(G_{min}=\frac{9}{2}\Leftrightarrow\left(3-x\right)\left(x+\frac{3}{2}\right)\ge0\)
\(Th1:\hept{\begin{cases}3-x\ge0\\x+\frac{3}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge\frac{3}{2}\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le2\)
\(Th2:\hept{\begin{cases}3-x\le0\\x+\frac{3}{2}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le\frac{3}{2}\end{cases}}\left(L\right)\)
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)