K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 12 2020

\(y=2\left(x^2-4x+4\right)-3=2\left(x-2\right)^2-3\ge-3\)

\(y_{min}=-3\) khi \(x=2\)

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

24 tháng 9 2023

Tham khảo:

Đỉnh S có tọa độ: \({x_S} = \dfrac{{ - b}}{{2a}} = \dfrac{{ - 2}}{{2.1}} =  - 1;\,{y_S} = {\left( { - 1} \right)^2} + 2.( - 1) + 3 = 2.\)

Hay \(S\left( { - 1;2} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số đạt giá trị nhỏ nhất bằng \(2\).

28 tháng 11 2019

Từ đề bài suy ra: 

Bảng biến thiên

Ta có y(-2) =5; y(2) =3

Dựa vào bảng biến thiên ta có

Chọn D.

5 tháng 7 2017

Đáp án A

27 tháng 8 2018

Đáp án C

8 tháng 12 2016

\(y=\sqrt{\left(x^2-2x+1\right)+4}=\sqrt{\left(x-1\right)^2+4}\ge\sqrt{4}=2\)

Đẳng thức xảy ra khi x = 1

Vậy min y = 2 khi x = 1

 

8 tháng 12 2016

cam on bn nhe

 

7 tháng 1 2019

Đáp án B

18 tháng 2 2018

Ta có:    

+Vẽ đường thẳng y= x với x≥3  đi qua hai điểm O(0; 0) và A(1;1) và lấy phần đường thẳng bên phải của đường thẳng x= 3.

+Vẽ đường thẳng y=5x-12 với 2≤ x≤ 3 đi qua hai điểm B(3;3) và C( 2; -2) và lấy phần đường thẳng nằm giữa của hai đường thẳng x=2; x=3.

+Vẽ đường thẳng y= -x đi qua hai điểm O và D( -1; -1) và lấy phần đường thẳng bên trái của đường thẳng x= 2

+ Dựa vào đồ thị hàm số ta có:


Chọn C.