K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2019

Ta có:

y = tan2 x+ cot2 x+ 3. (tanx+ cotx) – 1

= ( tanx +cotx)2 +3. ( tanx +cot x) – 3

Suy ra    y= t2 + 3t – 3 = f (t)

Bảng biến thiên

Vậy min y= - 5 đạt được khi t = - 2 

Không tồn tại max y

Đáp án A

 

a: ĐKXĐ: 2*sin x+1<>0

=>sin x<>-1/2

=>x<>-pi/6+k2pi và x<>7/6pi+k2pi

b: ĐKXĐ: \(\dfrac{1+cosx}{2-cosx}>=0\)

mà 1+cosx>=0

nên 2-cosx>=0

=>cosx<=2(luôn đúng)

c ĐKXĐ: tan x>0

=>kpi<x<pi/2+kpi

d: ĐKXĐ: \(2\cdot cos\left(x-\dfrac{pi}{4}\right)-1< >0\)

=>cos(x-pi/4)<>1/2

=>x-pi/4<>pi/3+k2pi và x-pi/4<>-pi/3+k2pi

=>x<>7/12pi+k2pi và x<>-pi/12+k2pi

e: ĐKXĐ: x-pi/3<>pi/2+kpi và x+pi/4<>kpi

=>x<>5/6pi+kpi và x<>kpi-pi/4

f: ĐKXĐ: cos^2x-sin^2x<>0

=>cos2x<>0

=>2x<>pi/2+kpi

=>x<>pi/4+kpi/2

 

2 tháng 8 2017

Đáp án D

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)      

x

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{2}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

\(y = \cot x\)

\(\sqrt 3 \)

1

0

-1

\( - \sqrt 3 \)

b)     Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; cotx) với \(x \in \left( {0;\pi } \right)\) và nối lại ta được đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) (Hình 31)

c)     Làm tương tự như trên đối với các khoảng \(\left( {\pi ;2\pi } \right),\left( { - \pi ;0} \right),\left( { - 2\pi ; - \pi } \right),....\)ta có đồ thị hàm số \(y = \cot x\)trên E được biểu diễn ở Hình 32.

 

22 tháng 2 2018

Đáp án C.

+ Xét hàm y = f(x) = cos 3x

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ D và f(-x) = cos (-3x) = cos 3x = f(x)

Do đó, y = f(x) = cos 3x  là hàm chẵn trên tập xác định của nó.

+ Xét hàm y = g(x) =  sin (x2 + 1)

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ D  và g(-x) = sin ((-x)2 + 1) = sin (x2 + 1) = g(x)

Do đó: y = g(x) = sin (x2 + 1) là hàm chẵn trên R.

+ Xét hàm y = h(x) = tan2 x

TXĐ: D = R\{π/2 + k2π, k ∈ Z)

Với mọi x ∈ D, ta có: -x ∈ D  và h(-x) = tan2 (-x) = tan2 x = h(x)

Do đó: y = h(x) = tan2 x  là hàm số chẵn trên D

+ Xét hàm y = t(x) = cot x.

TXĐ: D = R\{kπ, k ∈ Z)

Với mọi x ∈ D, ta có: -x ∈ D và t(-x) = cot (-x) = -cot x = -t(x)

Do đó: y = t(x) = cot x là hàm số lẻ trên D.

NV
11 tháng 9 2021

1. Không dịch được đề

2.

\(-1\le cos2x\le1\Rightarrow1\le y\le3\)

3.

a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)

\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

b.

\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)

\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)

\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

4.

\(y=\left(tanx-1\right)^2+2\ge2\)

\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Hàm số y = tanx nhận giá trị bằng – 1

-        Vẽ hàm số y = tanx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\)

-        Vẽ hàm số y = - 1

-        Lấy giao điểm của hai hàm số y = tanx và y = - 1

b)     Hàm số y = tanx nhận giá trị bằng 0

-        Vẽ hàm số y = tanx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\)

-        Vẽ hàm số y = 0

-        Lấy giao điểm của hai hàm số y = tanx và y = 0

 

c)     Hàm số y = cotx nhận giá trị bằng 1

-        Vẽ hàm số y = cotx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\)

-        Vẽ hàm số y = 1

-        Lấy giao điểm của hai hàm số y = cotx và y = 1

 

d)     Hàm số y = cotx nhận giá trị bằng 0

-        Vẽ hàm số y = cotx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\)

-        Vẽ hàm số y = 0

-        Lấy giao điểm của hai hàm số y = tanx và y = 0

NV
1 tháng 10 2019

ĐKXĐ: ....

Đặt \(a=tanx+cotx\Rightarrow a^2=\left(tanx+cotx\right)^2=\left(tanx-cotx\right)^2+4tanx.cotx\)

\(\Rightarrow a^2=\left(tanx-cotx\right)^2+4\ge4\Rightarrow\left[{}\begin{matrix}a\le-2\\a\ge2\end{matrix}\right.\)

Ta cũng có: \(a^2=tan^2x+cot^2x+2\Rightarrow tan^2x+cot^2x=a^2-2\)

\(\Rightarrow y=a^2-2+3a-1=a^2+3a-3\)

\(\Rightarrow y\) đồng biến trên \(\left(2;+\infty\right)\) và nghịch biến trên \(\left(-\infty;-2\right)\)

\(\Rightarrow y_{max}\) không tồn tại

\(y\left(2\right)=8\) ; \(y\left(-2\right)=-2\Rightarrow y_{min}=-2\)