K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\)

MIN P = 4 khi \(x-1=0=>x=1\)

b) \(2x^2-6x\)

\(=2\left(x^2-3x\right)\)

\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(=\frac{-18}{4}+2\left(x^2-\frac{3}{2}\right)^2\le\frac{-18}{4}\)

MIN Q = \(\frac{-18}{4}\)khi \(x^2-\frac{3}{2}=0\)

\(=>x^2=\frac{3}{2}\)

\(=>\orbr{\begin{cases}x=-\sqrt{\frac{3}{2}}\\x=\sqrt{\frac{3}{2}}\end{cases}}\)

Ủng hộ nha

1 tháng 7 2016

a) P=x^2-2x+5

=x2-2x+1+4

=(x-1)2+4

Ta thấy;\(\left(x-1\right)^2+4\ge0+4=4\)

Dấu = <=>x-1=0 =>x=1

Vậy...

21 tháng 9 2021

\(a,P=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=1\)

\(b,Q=2x^2-6x=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}\right)=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)

\(c,M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

a: Ta có: \(P=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

22 tháng 9 2016

a/Q = 2x2 - 6x   => 2Q = 4x2 - 12x  =>2Q = 4x2 - 12x + 9 - 9   => 2Q = (2x- 3)2 - 9 \(\ge\)-9    => Q\(\ge\)-4,5

Đẳng thức xảy ra khi: (2x - 3)2 = 0   => x = 1,5

Vậy GTNN của Q là -4,5 khi x = 1,5

b/ M = x2 + y2 - x + 6y + 10

=> M = x2 + y2 - x + 6y + 0,25 + 9 + 0,75

=> M = (x2 - x + 0,25) + (y2 + 6y + 9) + 0,75

=> M = (x - 0,5)2 + (y + 3)2 + 0,75\(\ge\)0,75

Đẳng thức xảy ra khi: (x - 0,5)2 = 0 và (y + 3)2 = 0    => x = 0,5 và y = -3

Vậy GTNN của M là 0,75 khi x = 0,5 và y = -3

Q= 2\(x^2\) - 6x

 \(\Leftrightarrow\) 2Q = 4\(x^2\) - 12x

\(\Leftrightarrow\) 2Q= 4\(x^2\) - 12x - 9 + 9

\(\Leftrightarrow\)2Q= ( 4\(x^2\)- 12x + 9) -9 

 \(\Leftrightarrow\)  2Q= (2x - 3) \(^2\) - 9 \(\ge\) -9

\(\Leftrightarrow\) Q = ( 2x-3 ) - 4,5 \(\ge\) -4,5

Dấu "=" xảy ra khi: 2x - 3 = 0

  \(\Leftrightarrow\) 2x = 3

\(\Leftrightarrow\) x= 1,5

Vậy giá trị nhỏ nhất của đa thức Q là -4,5 tại x= 1,5

M= \(x^2\) + \(y^2\) - x + 6y + 10

  = \(x^2\) + \(y^2\)  - x + 6y + 0,75 + 9 + 0,25

 = (\(x^2\) -x + 0,25 ) + (\(y^2\)+ 6y + 9)  + 0,75

  = ( x - 0,5 )\(^2\) + (y +3 )\(^2\)+ 0,75 \(\ge\) 0,75

Dấu "=" xảy ra khi:  

\(\hept{\begin{cases}\left(x-0,5\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\)\(\Leftrightarrow\) \(\hept{\begin{cases}x-0,5=0\\y+3=0\end{cases}}\)

                                            \(\Leftrightarrow\)\(\hept{\begin{cases}x=0,5\\y=-3\end{cases}}\)

Vậy giá trị nhỏ nhất của đa thức M là 0,75 khi x= 0,5 và y=-3

9 tháng 7 2016

a) P= x2 -2x +1 +4 = (x-1)2 +4 

Ta có: (x-1)2>= 0

\(\Rightarrow\) (x-1)2 +4 >= 4

GTNN của P=4 khi x= 1

c) M= (x2-x+1/4)+(y2+6y+9)+3/4   =   (x-1/2)2 + (y+3)+3/4

Ta có: (x-1/2)2 + (y+3) >= 0

\(\Rightarrow\) (x-1/2)2 + (y+3)+3/4 >= 3/4

GTNN của Q=3/4  khi x=1/2         ;    y=-3

 

b) Q= 2(x2-3x)  =  2(x2-3x+9/4)-9/2 =  2.(x-3/2)2-9/2

ta có 2.(x-3/2)2 >=0

\(\Rightarrow\) 2.(x-3/2)2-9/2>= -9/2

GTNN của Q=-9/2 khi x=3/2

9 tháng 7 2016

1 like cho mình nếu đúng nhé

haha

15 tháng 7 2016

a) GTNN P = 4

15 tháng 7 2016

Bạn ns thế thì thà mik ko đăng len càn hơn

28 tháng 7 2017

Câu 1:

\(a,P=x^2-2x+5=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Vậy Min \(P=4\) khi \(x-1=0\Rightarrow x=1\)

\(b,Q=2x^2-6x=2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\)

\(=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\forall x\)

Vậy \(MinQ=-\dfrac{9}{2}\) khi \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

\(c,M=x^2+y^2-x+6y+10\)

\(=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+9y+9\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Vậy Min \(M=\dfrac{3}{4}\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)

14 tháng 6 2015

 

\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2-6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{3}{4}\ge\frac{3}{4}\Rightarrow MinM=\frac{3}{4}\Leftrightarrow x=\frac{1}{2};y=3\)\(P=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\Rightarrow MinP=4\Leftrightarrow x=1\)

10 tháng 8 2016

a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4 
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4 
Vay gia tri nho nhat P=4 khi x=1 
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4] 
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2 
Vay gia tri nho nhat Q= -9/2 khi x= 3/2 
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4 
= ( x-1/2)^2 + (y+3)^2 +3/4 
M>= 3/4 
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3 

10 tháng 8 2016

P=x2-2x+1+4

=(x-1)2+4

vì (x-1)2 >= 0 với mọi x nên (x-1)2+4 lớn hơn hoặc = 4 

dấu = xảy ra khi (x-1)2=0 <=>x=1

vậy gtnn của P=4 khi x=1