Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a,\(P=x^2-2x+5=x^2-x-x+1+4=\left(x-1\right)^2+4\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
hay \(P\ge4\) với mọi giá trị của \(x\in R\).
Để \(P=4\) thì \(\left(x-1\right)^2+4=4\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
Vậy..............
b, Tương tự a.
c, \(M=x^2+y^2-x+6y+10\)
\(M=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)
\(M=\left(x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}\right)+\left(y^2+3y+3y+9\right)+\dfrac{3}{4}\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
hay \(M\ge\dfrac{3}{4}\) với mọi giá trị của \(x\in R\).
Để \(M=\dfrac{3}{4}\)thì
\(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy......................
Bài 2:
a, \(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2x-2x+4-7\right)\)
\(=-\left[\left(x-2\right)^2-7\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-7\ge-7\)
\(\Rightarrow-\left[\left(x-2\right)^2-7\right]\le7\)
hay \(A\le7\) với mọi giá trị của \(x\in R\).
Để \(A=7\)thì \(\left(x-2\right)^2=0\)
\(\Rightarrow x=2\)
Vậy..................
b,c làm tương tự!
Chúc bạn học tốt!!!
\(P=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Đẳng thức xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
\(Q=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
\(M=x^2+y^2-x+6y+10\)
\(=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
P=\(\left(X-1\right)^2+4\) \(\ge4\)=> giá trị nhỏ nhất là 4
Dấu = xảy ra khi x=1
M=\(\left(X^2-X\right)+\left(y^2+6y+9\right)+1=X\left(X-1\right)+\left(Y+3\right)^2+1\ge1\)
Dấu = xảy ra khi X=1 và Y=-3
a. \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
vì \(\left(x-1\right)^2\ge0\) với mọi x
=> (x-1)^2 +4 \(\ge\) vợi mọi x
Pmin=4 <=> x-1=0 <=>x=1
1.
b)\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu = xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\) và \(y+3=0\)
\(\Leftrightarrow x=\frac{1}{2}\) và \(y=-3\)
Vậy GTNN của M là \(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)và \(y=-3\)
Bài 1:
Ta có: \(4x-x^2-5\)
\(=-x^2+4x-5=-x^2+4x-4-1\)
\(=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2< 0\forall x\)
\(\Rightarrow-\left(x-2\right)^2-1< 0\forall x\)
\(\Rightarrow4x-x^2-5< 0\forall x\)
Bài 1:
\(4x-x^2-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2.x.2+4+1\right)\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-2\right)^2-1\le-1\)
\(\Rightarrow4x-x^2-5< 0\) với mọi x
Bài 2:
a) \(M=x^2+y^2-x+6y+10\)
\(M=x^2-2.x\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+y^2+2.y.3+9-9+10\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\left(y+3\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\) với mọi x và y
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow Mmin=\dfrac{3}{4}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
b) \(Q=2x^2-6x\)
\(Q=2\left(x^2-3x\right)\)
\(Q=2\left(x^2-2.x\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
\(Q=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
Vì \(2\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(\Rightarrow Qmin=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)
a)
\(A=x^2+y^2-x+6y+10.\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)
b)
\(B=2x-2x^2-5\)
\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
a) \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\)
MIN P = 4 khi \(x-1=0=>x=1\)
b) \(2x^2-6x\)
\(=2\left(x^2-3x\right)\)
\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=\frac{-18}{4}+2\left(x^2-\frac{3}{2}\right)^2\le\frac{-18}{4}\)
MIN Q = \(\frac{-18}{4}\)khi \(x^2-\frac{3}{2}=0\)
\(=>x^2=\frac{3}{2}\)
\(=>\orbr{\begin{cases}x=-\sqrt{\frac{3}{2}}\\x=\sqrt{\frac{3}{2}}\end{cases}}\)
Ủng hộ nha
a) P=x^2-2x+5
=x2-2x+1+4
=(x-1)2+4
Ta thấy;\(\left(x-1\right)^2+4\ge0+4=4\)
Dấu = <=>x-1=0 =>x=1
Vậy...
Câu 1:
\(a,P=x^2-2x+5=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Vậy Min \(P=4\) khi \(x-1=0\Rightarrow x=1\)
\(b,Q=2x^2-6x=2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\)
\(=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\forall x\)
Vậy \(MinQ=-\dfrac{9}{2}\) khi \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
\(c,M=x^2+y^2-x+6y+10\)
\(=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+9y+9\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Vậy Min \(M=\dfrac{3}{4}\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)