K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2021

M = x2 + 26y2 - 10xy + 14x - 76y + 59

= ( x2 - 10xy + 25y2 + 14x - 70y + 49 ) + ( y2 - 6y + 9 ) + 1

= ( x - 5y + 7 )2 + ( y - 3 )2 + 1

Vì \(\hept{\begin{cases}\left(x-5y+7\right)^2\\\left(y-3\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\forall x,y\)

Dấu "=" xảy ra khi x = 8 ; y = 3

Vậy MinM = 1 <=> x = 8 . y = 3

Ta có : \(M=x^2+26y^2-10xy+14x-76y+59\)

\(=\left(x^2-10xy+25y^2\right)+14\left(x-5y\right)+49+\left(y^2-6y+9\right)+1\)

\(=\left(x-5y\right)^2+14\left(x-5y\right)+49+\left(y-3\right)^2+1\)

\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\forall x,y\)

Dấu \("="\)xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-5y+7\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-5y+7=0\\y-3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-15+7=0\\y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=8\\y=3\end{cases}}\)

Vậy \(MinM=1\Leftrightarrow\hept{\begin{cases}x=8\\y=3\end{cases}}\)