Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cần cm : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\Leftrightarrow a^2+2\left|ab\right|+b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng; dấu "=" xảy ra \(\Leftrightarrow ab\ge0\))
Áp dụng ta có :
\(A=\left|x+3\right|+5\left|6x+1\right|+\left|x-1\right|+3=\left(\left|x+3\right|+\left|1-x\right|\right)+5\left|6x+1\right|+3\)
\(\ge\left|x+3+1-x\right|+5\left|6x+1\right|+3=5\left|6x+1\right|+7\ge7\) có GTNN là 7
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(1-x\right)\ge0\\\left|6x+1\right|=0\end{cases}\Rightarrow x=-\frac{1}{6}\left(TM\right)}\)
vẬY \(D_{min}=7\) khi \(x=-\frac{1}{6}\)
do \(|^{ }_{ }x+5|^{ }_{ }\ge x+5\)
\(\Rightarrow|^{ }_{ }x+5|^{ }_{ }+2-x\ge x+5+2-x\)
\(\Rightarrow A\ge7\)
\(\Rightarrow\)giá trị nhỏ nhất của A=7
Có I x + 5 I \(\ge\) 0 với mọi x
\(\Rightarrow\)I x + 5 I + 2 - x \(\ge\) 2 - x với mọi x
Dấu " = " xảy ra \(\Leftrightarrow\) I x + 5 I = 0
\(\Rightarrow\) x = - 5
Vậy A đạt gtnn là 2 - x khi x = -5
Mình ko chắc có đúng ko nên ai thấy lời giải của mk sai thì góp ý nha
b)
Vì (3x+12)^2 luôn > hoặc = 0 với mọi x
=> (3x+12)^2-100> hoặc =0 -100
Vậy GTNN của B =-100
Dấu "=" xảy ra khi 3x+12=0
3x=-12
x=-4
Giá trị nhỏ nhất của biểu thức \(A=\text{ | }\left(\text{ | }x\text{ | }+15\right)\text{ | }-3=\) là
A dat gia tri nho nhat
khí trí tuyệt đối của x+15=15 Vậy giá trị nhỏ nhất se la 15-3=12
Min A=12 khi x=0
`D=6|y-1/8|+x^2-4x+7=6|y-1/8|+(x-2)^2+3>=3AAx;y`
Dấu "=" xảy ra `<=>{(y-1/8=0),(x-2=0):}<=>(x;y)=(2;1/8)`
Vậy `D_(min)=3<=>(x;y)=(2;1/8)`
---
Nhắc lại kiến thức:
Với mọi `A\inRR` ta luôn có: `|A|>=0:A^2>=0(` Xảy ra `<=>A=0)`
Hằng đẳng thứ số 2: `X^2-2XY+Y^2=(X-Y)^2`
M = 207
\(M=207nhak\)
\(K\)\(mk\)\(k\)\(lai\)\(nhak\)