Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)
\(A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
\(A_{min}=3\) khi \(a=1\)
https://hoc24.vn/cau-hoi/co-the-dung-mot-can-dia-co-hai-dia-can-voi-nam-qua-cancac-qua-can-chi-de-o-mot-dia-can-de-can-tat-ca-cac-vat-co-khoi-luong-la-mot-so-tu-nhien-tu-1kg-den-30kg-duoc-khongcac-ban-giai-giup-mk-voi.341565384997
Thầy giải giúp e với ạ,e cảm ơn thầy ạ! <3
\(A=a^4-2a^3+3a^2-4a+5\)
\(\Leftrightarrow A=a^4-2a^3+a^2+2a^2-4a+2+3\)
\(\Leftrightarrow A=\left(a^4-2a^3+^2\right)+2\left(a^2-2a+1\right)+3\)
\(\Leftrightarrow A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\)
Có:\(\hept{\begin{cases}\left(a^2-a\right)^2\ge0\forall x\\2\left(a-1\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow A\ge3\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=a\\a=1\end{cases}}}\)
Vậy Min A=3 đạt được khi a=1
Nguồn: DORAEMON (lazi.vn)
Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo.
Phân tích thành tích: x^4+2015x^2+2014x+2015
Tìm giá trị nhỏ nhất của biểu thức A =a^4-2a^3+3a^2-4a+5
Câu 1 nha bạn
x^4 + x^3 + x^2 + 2014x^2 + 2014x + 2014 + 1 - x^3
=> x^4 + x^3 + x^2 + 2014x^2 + 2014x + 2014 - x^3 - 1
=> x^2 ( x^2 + x + 1 ) + 2014 ( x^2 + x + 1 ) - ( x - 1 )( x^2 + x + 1 )
=> ( x^2 + x + 1 )( x^2 + 2014 - x - 1)
A = (a4 - 2a3 + a2) + 2.(a2 - 2a + 1) + 3 = (a2 - a)2 + 2.(a - 1)2 + 3 > 0 + 2.0 + 3
Dấu "=" xảy ra khi a2 - a = 0 và a - 1 = 0 <=> a = 1
Vậy Min A = 3 tại a = 1
A=a4-2a3+3a2-4a+5
=a4-2a3+a2+2a2-4a+2+3
=(a2-1)2+2(a-1)2+3 >= 3 với mọi x (do 2 cái ngoặc >= 0)
minA=3,dấu "=" xảy ra <=> a=1
\(D=\left(x^2+z^2-2xz\right)+\left(x^2+y^2-2xy+2x-2y+1\right)+3\)
\(D=\left(x-z\right)^2+\left(x-y+1\right)^2+3\ge3\)
\(D_{min}=3\) khi \(\left\{{}\begin{matrix}x=z\\x=y-1\end{matrix}\right.\)
\(D=\left(\left(a^2\right)^2-2a^2.a+a^2\right)+3\left(a^2-2a+1\right)+5\)
\(=\left(a^2-a\right)^2+3\left(a-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi \(a=1\)