Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy: (x-1)^2 >hoặc =0
(y+3)^2 >hoặc = 0
suy ra (x-1)^2+ (y+3)^2 > hoac = 0
suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5
Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5
Vậy M đạt giá trị nhỏ nhất =5
Ta có (x+1)^2\(\ge0với\forall x\) (y+3)^2\(\ge0\)với\(\forall y\)(bình phương không âm)
=>B=(x+1)^2+(y+3)^2+1\(\ge1\)
\(\Leftrightarrow\)2A\(=2X^2+2XY+2Y^2-6X+6Y\)
\(\Leftrightarrow\)\(2A\)\(=X^2+2XY+Y^2\)\(+X^2-6X+9+Y^2+6Y+9\)\(-18\)
\(\Leftrightarrow2A=\left(X+Y\right)^2+\left(X-3\right)^2+\left(Y+3\right)^2\)\(-18\)
\(\Rightarrow2A\ge-18\)
\(\Rightarrow A\ge-9\)
DẤU "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-y\\x=3\\y=-3\end{cases}}\)
a: \(\left(2x+1\right)^4-1\ge-1\)
Dấu '=' xảy ra khi x=-1/2
b: \(\left(x^2-16\right)^2+\left|y-3\right|-2\ge-2\)
Dấu '=' xảy ra khi \(\left(x,y\right)\in\left\{\left(4;3\right);\left(-4;3\right)\right\}\)
Ta có: (x + 1)2 \(\ge\)0 và (y - 2)2 \(\ge\) 0
=> (x + 1)2 + (y - 2)2 + 9 \(\ge\)9
Đẳng thức xảy ra khi: (x + 1)2 = 0 và (y - 2)2 = 0 => x = -1 và y = 2
Vậy giá trị nhỏ nhất của (x + 1)2 + (y - 2)2 + 9 là 9 khi x = -1 và y = 2
\(A=\left(x+1\right)^2+\left(y-2\right)^2+9\)
Có: \(\left(x+1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\left(x+1\right)^2+\left(y-2\right)^2+9\ge9\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\) .
Vậy: \(Min_A=9\) tại \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)