K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

NT:(2x+1)^4>=0.Dấu ''='' xảy ra khi x=-1/2

=>(2x+1)^4-1>=-1.Dấu"=" xẩy ra khi x=-1/2

Vậy Min của biểu thức trên là -1

a: \(\left(2x+1\right)^4-1\ge-1\)

Dấu '=' xảy ra khi x=-1/2

b: \(\left(x^2-16\right)^2+\left|y-3\right|-2\ge-2\)

Dấu '=' xảy ra khi \(\left(x,y\right)\in\left\{\left(4;3\right);\left(-4;3\right)\right\}\)

21 tháng 6 2016

a)Ta thấy:

\(\left(2x+\frac{1}{3}\right)^2\ge0\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^2-\frac{5}{6}\ge0-\frac{5}{6}=-\frac{5}{6}\)

\(\Rightarrow A\ge-\frac{5}{6}\)

Dấu "=" <=>x=-1/6

Vậy MinA=-5/6<=>x=-1/6

b)Ta thấy:\(\hept{\begin{cases}\left|2x+3\right|\\\left|y-\frac{1}{2}\right|\end{cases}\ge}0\)

\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|\ge0\)

\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)

\(\Rightarrow B\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|2x-3\right|=0\\\left|y-\frac{1}{2}\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)

Vậy...

a: \(A=\left|x+1\right|+5\ge5\forall x\)

Dấu '=' xảy ra khi x=-1

b: \(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\le\dfrac{12}{3}+1=4+1=5\)

Dấu '=' xảy ra khi x=0

14 tháng 3 2017

a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)

Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)

b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)

\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)

\(\Leftrightarrow-\left|x-2\right|=-1\)

\(\Rightarrow\left|x-2\right|=1\)

\(\Rightarrow x=1;3\)

Mà x lớn nhất => x = 3

31 tháng 1 2017

Ta có (x+1)^2\(\ge0với\forall x\)  (y+3)^2\(\ge0\)với\(\forall y\)(bình phương không âm)

=>B=(x+1)^2+(y+3)^2+1\(\ge1\)

31 tháng 1 2017

thanks bn nha !!!:D:D

2 tháng 3 2017

ta thấy:  (x-1)^2 >hoặc =0

             (y+3)^2 >hoặc = 0

suy ra (x-1)^2+ (y+3)^2 > hoac = 0

suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5

Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5

Vậy M đạt giá trị nhỏ nhất =5

3 tháng 9 2016

Ta có: (x + 1)2 \(\ge\)0 và (y - 2)2 \(\ge\) 0

=> (x + 1)2 + (y - 2)2 + 9  \(\ge\)9

Đẳng thức xảy ra khi: (x + 1)2 = 0 và (y - 2)2 = 0  => x = -1 và y = 2

Vậy giá trị nhỏ nhất của (x + 1)2 + (y - 2) + 9 là 9 khi x = -1 và y = 2

3 tháng 9 2016

\(A=\left(x+1\right)^2+\left(y-2\right)^2+9\)

Có: \(\left(x+1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\left(x+1\right)^2+\left(y-2\right)^2+9\ge9\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\) .

Vậy: \(Min_A=9\) tại \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)