Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^2+y^2=4< =>x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(< =>4\ge\frac{\left(x+y\right)^2}{2}< =>\left(x+y\right)^2\le4.2=8< =>x+y\le\sqrt{8}\)
Hay \(x+y\le\sqrt{8}\)
Dấu = xảy ra khi và chỉ khi \(x=y=\sqrt{2}\)
Vậy GTLN của P = \(\sqrt{8}\)đạt được khi và chỉ khi \(x=y=\sqrt{2}\)
Bài 4:
\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)
Bài 5:
\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)
mik chưa học giá trị lớn nhất là max và giá trị nhỏ nhất là min nên bạn cho mik kí hiệu khác nha
a) Ta có: \(\left|x-2021\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-2021\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-2021\right|+9\ge9\forall x\)
Dấu '=' xảy ra khi x=2021
b) Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\left|y+1\right|\ge0\forall y\)
Do đó: \(\left|x-2\right|+\left|y+1\right|\ge0\forall x,y\)
\(\Leftrightarrow\left|x-2\right|+\left|y+1\right|+2021\ge2021\forall x,y\)
Dấu '=' xảy ra khi (x,y)=(2;-1)
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi
A=(x^2-25)^2+(y+5)^2-10>=-10
Dấu = xảy ra khi y=-5 và \(x\in\left\{5;-5\right\}\)
Ta có : \(x^2\ge0;y^2\ge0\)
\(\Rightarrow x^2+y^2+2013\ge2013\)
\(MinA=2013\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)
GTNN của A là 2013
GTNN của B là -1