K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

a)ta có:/y-1/>=0 với mọi y

           /y-1/+7>=7 với mọi y

dấu "=" xảy ra khi và chỉ khi:y-1=0=> y=1

vậy MIN của biểu thức là 7 tại y=1

27 tháng 7 2017

gt ngỏ nhất của bt A là 1.

gt lớn nhất của biểu thức B là -100

gt nhỏ nhất của bt C là -3

Bài 1 :

a)x.(x+3)=0

=>  x=0 hoặc x+3=0

ta có: x+3=0

          x   = -3

Vậy x=0 hoặc x=-3

b) (x-2). (5-x) = 0

=> x-2=0 hoặc 5-x =0

TH1   

x-2=0

x   =2

TH2

5-x  =0

  x   =5

Vậy x=5 hoặc x=2

Bài 2

a) Để A có GTNN thì | x: 9| + |y-5| < 0

=> A=1890 +|x:9|+ | y-5| < 1890

Dấu = chỉ xảy ra khi | x: 9|+|y-5|=0

1 tháng 6 2021

Trả lời:

A = ( 2x - 7 )4

Ta có: \(\left(2x-7\right)^4\ge0\forall x\)

Dấu "=" xảy ra khi 2x - 7 = 0 <=> 2x = 7 <=> x = 7/2

Vậy GTNN của A = 0 khi x = 7/2

B = ( x + 1 )10  + ( y - 2 )20 + 7 

Ta có:  \(\left(x+1\right)^{10}\ge0\forall x;\left(y-2\right)^{20}\ge0\forall y\)

\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}\ge0\forall x;y\)

\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}+7\ge7\forall x;y\)

Dấu "=" xảy ra khi x + 1 = 0 <=> x = -1  và y - 2 = 0 <=> y = 2

Vậy GTNN của B = 7 khi x = -1 và y = 2

C = ( 3x - 4 )100 + ( 5y + 1 )50 - 20

Ta có: \(\left(3x-4\right)^{100}\ge0\forall x;\left(5y+1\right)^{50}\ge0\forall y\)

\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}\ge0\forall x;y\)

\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}-20\ge-20\forall x;y\)

Dấu "=" xảy ra khi 3x - 4 = 0 <=> x = 4/3 và 5y + 1 = 0 <=> y = -1/5

Vậy GTNN của C = -20 khi x = 4/3 và y = -1/5

D = ( 2x + 3 )20 + ( 3y - 4 )10 + 1000

Ta có: \(\left(2x+3\right)^{20}\ge0\forall x;\left(3y-4\right)^{10}\ge0\forall y\)

\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}\ge0\forall x;y\)

\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}+100^0\ge1\forall x;y\)

Dấu "=" xảy ra khi 2x + 3 = 0 <=> x = -3/2 và 3y - 4 = 0 <=> y = 4/3

Vậy GTNN của D = 1 khi x = -3/2 và y = 4/3

E = ( x - y )50 + ( y - 2 )60 + 3

Ta có: \(\left(x-y\right)^{50}\ge0\forall x;y\)\(\left(y-2\right)^{60}\ge0\forall y\)

\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}\ge0\forall x;y\)

\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}+3\ge3\forall x;y\)

Dấu "=" xảy ra khi x - y = 0 <=> x = y và y - 2 = 0 <=> y = 2

Vậy GTNN của E = 3 khi x = y = 2

Nâng cao phát triển và Bồi dưỡng HSG Toán lớp 6 Đăng ký học trực tuyến: 0919.281.916 Thầy Thích – 0919.281.916 Email: doanthich@gmail.com f. |x| - (-2) = (-1) g. 5 - |x + 1| = 30 h. |x - 1| - x + 1 = 0 i. |2 - x| + 2 = x j. |x + 1| = |x - 2| k. 5 - |2x - 1| = (-7) l. |x + 2| 5 m. |x - 1| > 2 n. |x| = |23| và x < 0 o. |x| = |-2| và x > 0 p. (-1) + 3 + (-5) + 7 + … + x = 600 q. 2 + (-4) + 6 + (-8) + … + (-x) = - 2000 Bài 2: Tìm x Z sao cho: a. (x + 1).(3 - x) =...
Đọc tiếp
  1. Nâng cao phát triển và Bồi dưỡng HSG Toán lớp 6 Đăng ký học trực tuyến: 0919.281.916 Thầy Thích – 0919.281.916 Email: doanthich@gmail.com f. |x| - (-2) = (-1) g. 5 - |x + 1| = 30 h. |x - 1| - x + 1 = 0 i. |2 - x| + 2 = x j. |x + 1| = |x - 2| k. 5 - |2x - 1| = (-7) l. |x + 2| 5 m. |x - 1| > 2 n. |x| = |23| và x < 0 o. |x| = |-2| và x > 0 p. (-1) + 3 + (-5) + 7 + … + x = 600 q. 2 + (-4) + 6 + (-8) + … + (-x) = - 2000 Bài 2: Tìm x Z sao cho: a. (x + 1).(3 - x) = 0 b. (x - 2).(2x - 1) = 0 c. (3x + 9).(1 – 3x) = 0 d. (x2 + 1).(81 – x2 ) = 0 e. (x - 5)5 = 32 f. (2 - x)4 = 81 g. (31 – 2x)3 = -27 h. (x - 2).(7 - x) > 0 i. |x - 7| 3 Bài 3: Tìm x, y Z sao cho: a. |x + 25| + |-y + 5| = 0 b. |x - 1| + |x – y + 5| 0 c. |6 – 2x| + |x - 13| = 0 d. |x| + |y + 1| = 0 e. |x| + |y| = 2 f. |x| + |y| = 1 g. x.y = - 28 h. (2x - 1).(4y + 2) = - 42
  2. 3. Nâng cao phát triển và Bồi dưỡng HSG Toán lớp 6 Đăng ký học trực tuyến: 0919.281.916 Thầy Thích – 0919.281.916 Email: doanthich@gmail.com i. x + xy + y = 9 j. xy – 2x – 3y = 5 k. (5x + 1).(y - 1) = 4 l. 5xy – 5x + y = 5  DẠNG 3: BÀI TOÁN LIÊN QUAN GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT (MAX - MIN) Bài 1: Tìm x Z sao cho: a. x + 23 là số nguyên âm lớn nhất. b. x + 99 là số nguyên âm nhỏ nhất có hai chữ số c. 9 |x - 3| < 11 d. Tìm giá trị nhỏ nhất và lớn nhất của x sao cho: 1986 < |x + 2| < 2012 Bài 2: Tìm các giá trị lớn nhất hoặc nhỏ nhất của các biểu thức sau (x, y Z) a. A = |x - 3| + 1 b. B = |6 – 2x| - 5 c. C = 3 - |x + 1| d. D = - 100 - |7 - x| e. E = - (x + 1)2 - |2 - y| + 11 f. F = (x - 1)2 + |2y + 2| - 3 g. G = (x + 5)2 + (2y - 6)2 + 1 h. H = - 3 – (2 - x)2 – (3- y)2 i. I = 5 - |2x + 6| - |7 - y|  DẠNG 4: BỘI VÀ ƯỚC TRONG SỐ NGUYÊN Tìm x Z sao cho: a. (x – 4) (x + 1) b. (2x + 5) (x - 1) c. (4x + 1) (2x + 2) d. (3x + 2) (2x - 1)
  3. 4. Nâng cao phát triển và Bồi dưỡng HSG Toán lớp 6 Đăng ký học trực tuyến: 0919.281.916 Thầy Thích – 0919.281.916 Email: doanthich@gmail.com e. (x2 – 2x + 3) (x - 1) f. (3x – 1) (x - 4) g. (x2 + 3x + 9) (x + 3) h. (2x2 – 10x + 5) (x - 5)  DẠNG 5: MỘT SỐ BÀI TOÁN CHỨNG MINH Bài 1: Cho A = a – b + c; B = -a + b – c, với a, b, c Z. Chứng minh rằng: A và B là hai số đối nhau. Bài 2: Chứng minh rằng: (a - b) – (b + c) + (c - a) – (a – b - c) = - (a + b - c). Bài 3: Cho a, b, c N và a 0. Chứng tỏ rằng biểu thức P luôn âm, biết: P = a.(b - a) – b(a - c) – bc. Bài 4: Chứng minh các đẳng thức sau: a. (a - b) + (c - d) – (a - c) = - (b + d) b. (a - b) – (c - d) + (b + c) = a + d Bài 5: Cho x, y thuộc số nguyên. Chứng minh rằng: 6x + 11y là bội của 31 khi và chỉ khi x + 7y là bội của 31. Bài 6: Cho x, y thuộc số nguyên. Chứng minh rằng: 5x + 47y là bội của 17 khi và chỉ khi x + 6y là bội của 17. Bài 7: Chứng minh rằng với mọi a thuộc số nguyên, ta có: a. (a - 1).(a + 2) + 12 không là bội của 9. b. 49 không là ước của (a + 2)(a + 9) + 21. 
2
2 tháng 4 2017

cái gì thế này???????????????????????????????????

31 tháng 10 2021

mik lp 6 nhưng nhìn bài của bn mik ko hiểu j cả luôn ý

25 tháng 2 2019

Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\) 

\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )

            b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN

Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )

\(\Rightarrow GTNN\) của B = 25

Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN

Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN

Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\)  của \(\left|x+5\right|=0\)( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN

Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\)  của\(\left(n-1\right)^2=0\)( khi đó n = 1)

Vậy GTNN của C bằng  25

27 tháng 2 2019

Câu 1 : a ) Ta có : A=|x32|0 

GTNN của A=0( khi đó x = 32 )

            b) Để B đạt GTNN thì |x+2| đạt GTNN

Ta có : |x+2|0GTNN của |x+|=0( khi đo x = -2 )

GTNN của B = 25

Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN

Mà |x|0GTNN của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì |x+5| đạt GTNN

Mà |x+5|0GTNN  của |x+5|=0( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì (n1)2 đạt GTNN

Mà (x1)20GTNN  của(n1)2=0( khi đó n = 1)

Vậy GTNN của C bằng  25

11 tháng 1 2018

1, ta thấy :x^2>=0 =>3x^2>=0 =>3x^2+1>=1 =>A>=1 

dau "=' xay ra khi va chi khi : x^2=0=>x=0 

 vậy GTNN của A =1 khi và chỉ khi x=0

2, Ta thấy Ix-1I>=0 =>3Ix-1I>=0  =>3Ix-1I-3<=3 =>B<=3

  Dấu "= xảy ra khi ra chỉ khi :Ix-1I=0 =>x=1

Vậy GTLN của B=3 khi và chỉ khi x=1

3, Ta thấy (x-1)^2 >=0

=>3-(x-1)^2<=3

=>D<=3

Dau "=" xảy ra khi và chỉ khi (x-1)^2=0 =>x=1

vay GTLN của D =3 khi và chỉ khi x=1 

còn C thì lâu mk k làm mấy cái dạng này nên cũng quên :))) so bj sai

12 tháng 2 2018

Bài j mà dễ v~ !

3 tháng 10 2018

dễ thì bạn làm đi chớ