Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(x-1\right)^2\ge0\)
\(\left|2y+2\right|\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\)
\(\Rightarrow Min_E=-3\)
a)ta có:/y-1/>=0 với mọi y
/y-1/+7>=7 với mọi y
dấu "=" xảy ra khi và chỉ khi:y-1=0=> y=1
vậy MIN của biểu thức là 7 tại y=1
1. a, => -12x+60+21-7x = 5
=> 81 - 19x = 5
=> 19x = 81 - 5 = 76
=> x = 76 : 19 = 4
Tk mk nha
A = | x - 3 | + 1
Ta có : \(\left|x-3\right|\ge0\forall x\Rightarrow\left|x+3\right|+1\ge1\)
Dấu = xảy ra <=> | x + 3 | = 0
<=> x + 3 = 0
<=> x = -3
Vậy AMin = 1 khi x = -3
B = -100 - | 7 - x |
Ta có : \(\left|7-x\right|\ge0\forall x\Rightarrow-\left|7-x\right|\le0\)
=> \(-100-\left|7-x\right|\le-100\)
Dấu = xảy ra <=> - | 7 - x | = 0
<=> 7 - x = 0
<=> x = 7
Vậy BMax = -100 khi x = 7
C = -( x + 1 )2 - | 2 - y | + 11
Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|2-y\right|\ge0\forall y\end{cases}\Rightarrow}\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\)
=> \(-\left(x+1\right)^2-\left|2-y\right|\le11\forall x,y\)
Dấu = xảy ra <=> -( x + 1 )2 = 0 và | 2 - y | = 0
<=> x + 1 = 0 và 2 - y = 0
<=> x = -1 và y = 2
Vậy CMax = 11 khi x = -1 ; y = 2
D = ( x - 1 )2 + | 2y + 2 | + 3
Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|2y+2\right|\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left|2y+2\right|+3\ge}3\)
Dấu = xảy ra <=> ( x - 1 )2 = 0 và | 2y + 2 | = 0
<=> x - 1 = 0 và 2y + 2 = 0
<=> x = 1 và y = -1
Vậy DMin = 3 khi x = 1 và y = -1
a) A=/x-3/+1>=0+1=1
dấu "="sảy ra <=>x-3=0<=>x=3
vậy min A=1 <=>x=3
b) B=-100-/7-x/=<-100-0=-100
dấu "="sảy ra <=>7-x=0<=>x=7
vậy max B=-100<=>x=7
c)C=-(x+1)^2-/2-y/+11=<-0-0+11=11
dấu "="sảy ra <=>x=-1vày=2
vậy max C=11<=>x=-1 và y=-2
d)D=(x-1)^2+/2y+2/+3>=0+0+3=3
dấu "="sảy ra <=>x=1 và y =-1
vậy min D=3<=>x=1 và y=-1
Vì |x-3|>/=0
=>|x-3|+1>/=0+1
=> A>/=1
dấu "=" xảy ra khi<=>|x-3|=0
x-3=0
x=0+3
x=3
Vậy min A=1
Khi x=3
A = | x - 3 | + 1
Vì | x - 3 | \(\ge0\forall x\)
=> | x - 3 | + 1 \(\ge1\forall x\)
=> A \(\ge1\forall x\)
=> A = 1 <=> | x - 3 | = 0
<=> x - 3 = 0
<=> x = 3
Vậy A min = 1 khi x = 3
a,,A=|x-3|+1
Ta thấy:\(\left|x-3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+1\ge0+1=1\)
\(\Rightarrow A\ge1\).Dấu = khi x=3
Vậy....
b)B=|6-2x|-5
Ta thấy:\(\left|6-2x\right|\ge0\)
\(\Rightarrow\left|6-2x\right|-5\ge0-5=-5\)
\(\Rightarrow B\ge-5\).Dấu = khi x=3
Vậy...
c) C=3-|x+1|
Ta thấy:\(-\left|x+1\right|\le0\)
\(\Rightarrow3-\left|x+1\right|\le3-0=3\)
\(\Rightarrow C\le3\).Dấu = khi x=-1
e) E= -(x+1)^2 -|2-y|+11
Ta thấy:\(\hept{\begin{cases}-\left(x+1\right)^2\\-\left|2-y\right|\end{cases}\le}0\)
\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|\le0\)
\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|+11\le0+11=11\)
\(\Rightarrow E\le11\).Dấu = khi x=-1 y=2
Vậy...
f)F= (x-1)^2+|2y+2|-3
Ta thấy:\(\hept{\begin{cases}\left(x-1\right)^2\\\left|2y+2\right|\end{cases}}\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge0-3=-3\)
\(\Rightarrow F\ge-3\).Dấu = khi x=1 y=-1
Vậy...
1, ta thấy :x^2>=0 =>3x^2>=0 =>3x^2+1>=1 =>A>=1
dau "=' xay ra khi va chi khi : x^2=0=>x=0
vậy GTNN của A =1 khi và chỉ khi x=0
2, Ta thấy Ix-1I>=0 =>3Ix-1I>=0 =>3Ix-1I-3<=3 =>B<=3
Dấu "= xảy ra khi ra chỉ khi :Ix-1I=0 =>x=1
Vậy GTLN của B=3 khi và chỉ khi x=1
3, Ta thấy (x-1)^2 >=0
=>3-(x-1)^2<=3
=>D<=3
Dau "=" xảy ra khi và chỉ khi (x-1)^2=0 =>x=1
vay GTLN của D =3 khi và chỉ khi x=1
còn C thì lâu mk k làm mấy cái dạng này nên cũng quên :))) so bj sai