K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

\(D=\left|x-2019\right|+\left|x-2020\right|\)

Ta có: \(\left|x-2020\right|=\left|2020-x\right|\)

\(\Rightarrow\left|x-2019\right|+\left|x-2020\right|=\left|x-2019\right|+\left|2020-x\right|\)

\(\Rightarrow D=\left|x-2019\right|+\left|2020-x\right|\ge\left|x-2019+2020-x\right|\)

\(\Rightarrow D\ge1\)

Dấu " = " xảy ra khi và chỉ khi:

\(\left(x-2019\right)\left(2020-9\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2019\ge0\\2020-9\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2019\le0\\2020-x\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2019\\x\ge2020\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2029\\x\le2020\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=2020\)

Vậy ................

AH
Akai Haruma
Giáo viên
27 tháng 12 2023

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$

$|x-2020|\geq 0$ với mọi $x$

$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$

Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$

Tức là $x=2020$

5 tháng 1 2022

\(A=\left(\left|x-1\right|+\left|2020-x\right|\right)+\left(\left|x-2\right|+\left|2019-x\right|\right)+...+\left(\left|x-1009\right|+\left|1010-x\right|\right)\\ A\ge\left|x-1+2020-x\right|+\left|x-2+2019-x\right|+...+\left|x-1009+1010-x\right|\\ A\ge2019+2017+...+1=\dfrac{2020\left[\left(2019-1\right):2+1\right]}{2}=1020100\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(2020-x\right)\ge0\\...\\\left(x-1009\right)\left(1010-x\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\le x\le2020\\...\\1009\le x\le1010\end{matrix}\right.\)

\(\Leftrightarrow1009\le x\le1010\)

11 tháng 3 2022

\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)

\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)

\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)

\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)

\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)

21 tháng 5 2020

Có: \(|x-1|\ge0\)

      \(|x-2|\ge0\)

     .................

      \(|x-2019|\ge0\)

=>  \(A\ge0\)

   Vậy giá trị nhỏ nhất của A là 0

21 tháng 5 2020

Cám ơn bạn nhiều <3