Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = |(x - 2020)(x2 - 16)| + 2x(x - 4) + 8(4 - x ) + 2021
= |(x - 2020)(x2 - 16)| + 2x(x - 4) - 8(x - 4 ) + 2021
= |(x - 2020)(x2 - 16)| + (x - 4)(2x - 8) + 2021
= |(x - 2020)(x2 - 16)| + 2(x - 4)2 + 2021
Lại có \(\hept{\begin{cases}\left|\left(x-2020\right)\left(x^2-16\right)\right|\ge0\forall x\\2\left(x-4\right)^2\ge0\forall x\end{cases}}\)
=> |(x - 2020)(x2 - 16) + 2(x - 4)2 + 2021 \(\ge2021\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2020\right)\left(x^2-16\right)=0\\2\left(x-4\right)^2=0\end{cases}}\)
Khi (x - 2020)(x2 - 16) = 0
=> \(\orbr{\begin{cases}x-2020=0\\x^2-16=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2020\\x=\pm4\end{cases}}\)(1)
Khi 2(x - 4)2 = 0
=> x - 4 = 0
=> x = 4 (2)
Từ (1) (2) => x = 4
Vậy Min M = 2021 <=> x = 4
Có: \(|x-1|\ge0\)
\(|x-2|\ge0\)
.................
\(|x-2019|\ge0\)
=> \(A\ge0\)
Vậy giá trị nhỏ nhất của A là 0
\(A=\left(\left|x-1\right|+\left|2020-x\right|\right)+\left(\left|x-2\right|+\left|2019-x\right|\right)+...+\left(\left|x-1009\right|+\left|1010-x\right|\right)\\ A\ge\left|x-1+2020-x\right|+\left|x-2+2019-x\right|+...+\left|x-1009+1010-x\right|\\ A\ge2019+2017+...+1=\dfrac{2020\left[\left(2019-1\right):2+1\right]}{2}=1020100\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(2020-x\right)\ge0\\...\\\left(x-1009\right)\left(1010-x\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\le x\le2020\\...\\1009\le x\le1010\end{matrix}\right.\)
\(\Leftrightarrow1009\le x\le1010\)
\(D=\left|x-2019\right|+\left|x-2020\right|\)
Ta có: \(\left|x-2020\right|=\left|2020-x\right|\)
\(\Rightarrow\left|x-2019\right|+\left|x-2020\right|=\left|x-2019\right|+\left|2020-x\right|\)
\(\Rightarrow D=\left|x-2019\right|+\left|2020-x\right|\ge\left|x-2019+2020-x\right|\)
\(\Rightarrow D\ge1\)
Dấu " = " xảy ra khi và chỉ khi:
\(\left(x-2019\right)\left(2020-9\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2019\ge0\\2020-9\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2019\le0\\2020-x\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2019\\x\ge2020\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2029\\x\le2020\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=2020\)
Vậy ................
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$
$|x-2020|\geq 0$ với mọi $x$
$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$
Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$
Tức là $x=2020$