Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\)
=>(x-3)(x-1)=x^2
=>x^2=x^2-4x+3
=>-4x+3=0
=>x=3/4
2: \(\dfrac{5}{3x+2}=2x-1\)
=>(2x-1)(3x+2)=5
=>6x^2+4x-3x-2-5=0
=>6x^2+x-7=0
=>6x^2+7x-6x-7=0
=>(6x+7)(x-1)=0
=>x=1hoặc x=-7/6
a: Thay x=-4 vào B, ta được:
\(B=\dfrac{-4+3}{-4}=\dfrac{-1}{-4}=\dfrac{1}{4}\)
b: \(P=A\cdot B=\dfrac{x^2-3x+2x-9+3x+9}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}\)
\(=\dfrac{x^2+2x}{\left(x-3\right)}\cdot\dfrac{1}{x}=\dfrac{x+2}{x-3}\)
c: Để P nguyên thì \(x-3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{4;2;8;-2\right\}\)
Câu 1 :
\(E=4x^2+y^2-4x-2y+3\)
\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)
\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)
Câu 2 :
\(G=x^2+2y^2+2xy-2y\)
\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)
\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
Ta có:B=(x-1/x+2)+(2-5x/4-x^2)
=[(x-1)*(x-2)/(x+2)-(2-5x)/(x-2)*(x+2)]
=(x^2+2x)/(x-2)*(x+2)
=x/(x-2)
=> 5B=5x/(x-2)
=>A-5B = (x^3+2/x-2)-(5x/x-2)=x^3-5x+2/x-2=(x-2)*(x^2+2x-1)/(x-2)=x^2+2x-1=(x+1)^2-2
vì (x+1)^2>= 0
=> A-5B= (x+1)^2-2>= -2
Dấu `=' xảu ra<=> (x+1)^2 =0
=>x=-1
vậy GTNN của P=-2 <=> x=-1