Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Rightarrow m=\left|x-1\right|+\left|x-5\right|\)
\(=\left|x-1\right|+\left|-\left(x-5\right)\right|\)
\(=\left|x-1\right|+\left|5-x\right|\)
Theo BĐT ta có: \(m=\left|x-1\right|+\left|5-x\right|\ge\left|x-1+5-x\right|=4\)
Vậy: \(m_{min}=4\)
Ta có: \(\left|x-\dfrac{2}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-\dfrac{2}{3}\right|-1\ge-1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)
\(A=31-\sqrt{2x+7}\)
Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)
Với mọi \(x\ge-3,5\) ta có:
\(\sqrt{2x+7}\ge0\)
\(\Rightarrow A=31-\sqrt{2x+7}\le31\)
Dấu "=" xảy ra khi:
\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)
Vậy \(MAX_A=31\) khi \(x=-3,5\)
\(B=-9+\sqrt{7+x}\)
Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:
\(x\ge-7\)
Với mọi \(x\ge-7\) ta có:
\(\sqrt{7+x}\ge0\)
\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:
\(\sqrt{7+x}=0\Rightarrow x=-7\)
\(\Rightarrow MIN_B=-9\) khi \(x=-7\)
a, Sửa đề: Tìm GTLN của biểu thức
Vì \(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)
\(\Rightarrow31-\sqrt{2x+7}\le31\)
Dấu ''='' xảy ra khi :
\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)
Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5
b, Tìm GTNN của B
Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)
Vì \(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)
Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)
Vậy \(B_{Min}=-9\) khi x = -7
p/s: Lần sau gửi đề cẩn thận hơn ||^^
\(\left|x-2016\right|\ge0\)
\(\Leftrightarrow-1,7+\left|x-2016\right|\ge-1,7\)
Dấu "=" xảy ra khi : \(\left|x+2016\right|=0\)
\(\Leftrightarrow x=-2016\)
Vậy ...
a) \(A=31-\sqrt{2x+7}\)
Ta có: \(-\sqrt{2x+7}\le0\forall x\)
\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)
Vậy MIN A = 31
ghi thiếu cmnr đề r :>
\(A=\left|x-2016\right|+\left|x-1\right|=\left|x-2016\right|+\left|-x+1\right|\ge\left|x-2016-x+1\right|\)
\(\Leftrightarrow A\ge\left|2015\right|=2015\)
dấu "=" xảy ra khi \(\left(x-2016\right).\left(-x+1\right)\ge0\)
=> \(1\le x\le2016\)
Vậy Min A =2015 khi và chỉ khi \(1\le x\le2016\)
Nếu x < 2016 =>\(|x-2016|=2016-x\) .
Khi đó: A=2016-x+x-1=2015
Nếu \(x\ge2016\) =>\(|x-2016|=x-2016\) .
Khi đó: A=x-2016+x-1=2.x-2017 \(\ge2.2016-2017=2015\)
Vậy Amin=2015 \(\Leftrightarrow\)x=2016.