Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi x=-1/2
Vậy Amin=3/4 khi x=-1/2
b,\(B=2x^2-5x-2\)
\(\Rightarrow2B=4x^2-10x-4=\left(4x^2-10x+\frac{25}{4}\right)-\frac{41}{4}=\left(2x-\frac{5}{2}\right)^2-\frac{41}{4}\)
Vì \(\left(2x-\frac{5}{2}\right)^2\ge0\Rightarrow2B=\left(2x-\frac{5}{2}\right)^2-\frac{41}{4}\ge-\frac{41}{4}\Rightarrow B\ge-\frac{41}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmin=-41/8 khi x=5/4
c,\(C=x^2+5y^2+2xy-y+3=\left(x^2+2xy+y^2\right)+\left(4y^2-y+\frac{1}{16}\right)+\frac{47}{16}=\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2+\frac{47}{16}\)
Vì\(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(2y-\frac{1}{4}\right)^2\ge0\end{cases}}\Rightarrow\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2\ge0\)
\(\Rightarrow C=\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2+\frac{47}{16}\ge\frac{47}{16}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{8}\\y=\frac{1}{8}\end{cases}}}\)
Vậy Cmin=47/16 khi x=-1/8,y=1/8
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)
\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)
Ta thấy : \(1-y^2\le1\forall y\) \(\Rightarrow\left(x+y+3\right)^2\le1\)
\(\Rightarrow-1\le x+y+3\le1\)
\(\Rightarrow-1+2013\le x+y+3+2013\le1+2013\)
\(\Rightarrow2012\le x+y+2016\le2014\)
Vậy ta có :
+) Min \(B=2012\) . Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-4\end{cases}}\)
+) Max \(M=2014\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
a)\(A=x^2+x+1\)
\(A=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy Amin = 3/4 <=> x = -1/2
b)\(B=2x^2-5x-2\)
\(B=\left(\sqrt{2}x\right)^2-2.\sqrt{2}.\sqrt{2}+\left(\sqrt{2}\right)^2-9\)
\(B=\left(\sqrt{2}x-\sqrt{2}\right)^2-9\ge-9\)
Vậy Bmin = -9 <=> x = 1
cho x y thỏa mãn \(x^2+2xy+6x+6y+2y^2+8=0\)
tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+2016
\(A=x^2-2xy-12x+6y^2+2y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+2y+45\)
\(=\left(x-\left(y+6\right)\right)^2-y^2-12y-36+6y^2+2y+45\)
\(=\left(x-y-6\right)^2+5y^2-10y+5+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Vậy \(A_{min}=4\)khi \(y=1\)và \(x=7\)
M = 2x2 + 5y2 - 2xy + 1
=> 2M = 4x2 + 10y2 - 4xy + 2
= (4x2 - 4xy + y2) + 9y2 + 2
= (4x - y)2 + (3y)2 + 2
=> M = \(\frac{\left(4x-y\right)^2}{2}+\frac{\left(3y\right)^2}{2}+1\ge1\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}4x-y=0\\3y=0\end{cases}}\Leftrightarrow x=y=0\)
Vậy Min M = 1 <=> x = y = 0
A = x2 - 2xy + y2 + 4x2 + 6x + 9 + 4y2 - 6x + 9 -18
A = (x-y)2+(2x+1)2+(2y-1)2 - 18 ≥ -18
vật min của A là -18 khi x = -\(\frac{1}{2}\); y = \(\frac{1}{2}\)
eyyy man