K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

7 tháng 11 2017

a) Ta có:

\(\sqrt{x}\ge0\Rightarrow\frac{1}{2}+\sqrt{x}\ge\frac{1}{2}+0=\frac{1}{2}\Rightarrow P_{min}=\frac{1}{2}\) khi và chỉ khi \(\sqrt{x}=0\Rightarrow x=0\)

b) Ta có:

\(2.\sqrt{x-1}\ge0\Rightarrow7-2.\sqrt{x-1}\le7-2.0=7\Rightarrow Q_{max}=7\)khi và chỉ khi \(2.\sqrt{x-1}=0\Rightarrow\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)

10 tháng 5 2017

a) A có giá trị nhỏ nhất khi \(\sqrt{x+2}=0\)

Vậy giá trị nhỏ nhất của A là \(\dfrac{3}{11}\).

b) Ta có: -3\(\sqrt{x-5}\) \(\le0\)

=> B có giá trị lớn nhất khi -3\(\sqrt{x-5}\) = 0

Vậy giá trị lớn nhất của B là \(\dfrac{5}{17}\).

5 tháng 2 2021

Ta có: \(\dfrac{\sqrt{x}-1}{\sqrt{x} +3}=\dfrac{\sqrt{x}+3-4}{\sqrt{x}+3}=1-\dfrac{4}{\sqrt{x}+3}\)

\(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\) 

\(\Rightarrow\dfrac{4}{\sqrt{x}+3}\le\dfrac{4}{3}\Rightarrow-\dfrac{4}{\sqrt{x}+3}\ge-\dfrac{4}{3}\\ \Rightarrow1-\dfrac{4}{\sqrt{x}+3}\ge1-\dfrac{4}{3}=-\dfrac{1}{3}\)

Vậy giá trị nhỏ nhất của biểu thức trên là \(-\dfrac{1}{3}\). Dấu bằng xảy ra khi và chỉ khi \(x=0\).

2 tháng 10 2016

Ta có \(x+y+z=1\Rightarrow x+y=1-z,\) ta có:

\(\frac{x+y}{\sqrt{xy+z}}=\frac{1-z}{\sqrt{xy+1-x-y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}\)

\(\frac{y+z}{\sqrt{yz+x}}=\frac{1-x}{\sqrt{yz+1-y-z}}=\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}\)

\(\frac{z+x}{\sqrt{zx+y}}=\frac{1-y}{\sqrt{zx+1-x-z}}=\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)

Khi đó \(P=\frac{x+y}{\sqrt{xy+z}}+\frac{y+z}{\sqrt{yz+x}}+\frac{z+x}{\sqrt{zx+y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}+\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}+\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)

               \(\ge3\sqrt[3]{\frac{1-z}{\left(1-x\right)\left(1-y\right)}\times\frac{1-x}{\left(1-y\right)\left(1-z\right)}\times\frac{1-y}{\left(1-x\right)\left(1-z\right)}}=3\)

Vậy \(MinP=3\) đạt được khi \(x=y=z=\frac{1}{3}\) 

14 tháng 5 2017

\(P=\dfrac{x+y}{\sqrt{xy+z}}+\dfrac{y+z}{\sqrt{yz+x}}+\dfrac{z+x}{\sqrt{xz+y}}\)

\(P=\dfrac{x+y}{\sqrt{xy+\left(x+y+z\right)z}}+\dfrac{y+z}{\sqrt{yz+\left(x+y+z\right)x}}+\dfrac{x+z}{\sqrt{zx+\left(x+y+z\right)y}}\)

\(P=\dfrac{x+y}{\sqrt{xy+xz+yz+z^2}}+\dfrac{y+z}{\sqrt{yz+x^2+xy+xz}}+\dfrac{x+z}{\sqrt{xz+xy+y^2+yz}}\)

\(P=\dfrac{x+y}{\sqrt{\left(x+z\right)\left(y+z\right)}}+\dfrac{y+z}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{x+z}{\sqrt{\left(x+y\right)\left(y+z\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow P\ge3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}}}=3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}=3\)

\(\Rightarrow P\ge3\)

Vậy \(P_{min}=3\)

Dấu " = " xảy ra khi \(x=y=z=\dfrac{1}{3}\)

6 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha: :

Link :   https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách

OK<3

6 tháng 10 2018

1a/ Để B có nghĩa thì x+1≥0 => x≥-1

b/ B>2

=> \(\sqrt{x+1}>2\)

\(\Rightarrow x+1>4\Rightarrow x>3\)

2a/ Để A có nghĩa thì 2003-x≥0 => x≤2003

b/ Ta có \(\sqrt{2003-x}\ge0\forall x\)

=>A≥2004

MinA=2004 khi x=2003

Chúc bạn học tốt!

13 tháng 11 2017

Ta có : \(\sqrt{x}\ge0\forall x\)

\(\Rightarrow\frac{1}{3}+\sqrt{x}\ge0+\frac{1}{3}\)

\(\Rightarrow\frac{1}{3}+\sqrt{x}\ge\frac{1}{3}\)

=> GTNN là 1/3.

Ta có : \(2\sqrt{x+2}\ge0\forall x\)

\(\Rightarrow5-2\sqrt{x+2}\ge5-0\)

\(\Rightarrow5-2\sqrt{x+2}\ge5\)

=> GTLN là 5 .

1 tháng 10 2019

Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)

Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5

 Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)

Vậy B đạt giá  trị lớn nhất là 3/19 khi và chỉ khi x = 5

C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2

Suy ra x là số chính phương lẻ

 Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}

23 tháng 11 2023

ĐKXĐ: x>=0 và x<>4

\(\sqrt{x}>=0\)

=>\(-\sqrt{x}< =0\)

=>\(-\sqrt{x}+2< =2\)

=>\(B=\dfrac{4}{2-\sqrt{x}}>=\dfrac{4}{2}=2\)

Dấu '=' xảy ra khi x=0