Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>\(-\left|x-2011\right|+\left(x-2011\right)^2=0\)
\(\Leftrightarrow\left|x-2011\right|\left(\left|x-2011\right|-1\right)=0\)
\(\Leftrightarrow x\in\left\{2011;2012;2010\right\}\)
Lời giải:
$A=\frac{x}{3}+5+\frac{12}{x}$
Áp dụng BĐT Cô-si cho các số dương:
$\frac{x}{3}+\frac{12}{x}\geq 2\sqrt{\frac{x}{3}.\frac{12}{x}}=4$
$\Rightarrow A\geq 4+5=9$
Vậy $A_{\min}=9$. Giá trị này đạt được khi $x=6$
Câu 1:
$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$
Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$
Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.
Câu 2:
Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$
Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$
Với $x\in (1;3)$ thì hàm luôn nghịch biến
$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$
$\Rightarrow$ hàm không có min, max.
f(x) = -x2 + 2x + 15
Đồ thị hàm số là parabol quay xuống dưới, đỉnh parabol tại điểm (1,16), parabol cắt trục hoành tại 2 điểm có hoành độ là -3 và 5 (bạn tự vẽ hình)
Nhìn vào đồ thị suy ra giá trị lớn nhất của f(x) trong [-3,5] là 16 (khi x = 1) và giá trị nhỏ nhất là 0 (khi x = -3 hoặc x=5)
\(|x - 2013| \ge 0 \forall x \\\Leftrightarrow 2012|x - 2013| \ge 0 \forall x \\\Leftrightarrow 2011 + 2012 |x - 2013| \ge 2011 \forall x \)
Dấu "=" xảy ra khi
\(|x - 2013| = 0 \\\Leftrightarrow x - 2013 =0 \\\Leftrightarrow x = 2013\)
Vậy \(Min_A = 2011 \) khi\(x = 2013\)