Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)để A có giá trị nguyên
=>-3 chia hết 2x-1
=>2x-1\(\in\){-3,-1,1,3}
=>2x-1\(\in\){-7;-3;1;5}
b)để B có giá trị nguyên
=>4x+5 chia hết 2x-1
<=>[2(2x-1)+7] chia hết 2x-1
=>2x-1\(\in\){1,-1,7,-7}
=>x\(\in\){1;-3;13;-15}
c tương tự
a; A = \(\dfrac{1}{15}\) \(\times\) \(\dfrac{225}{x+2}\) + \(\dfrac{3}{14}\) \(\times\) \(\dfrac{196}{3x+6}\) (đk \(x\) ≠ - 2)
A = \(\dfrac{15}{x+2}\) + \(\dfrac{3\times14}{3\times\left(x+2\right)}\)
A = \(\dfrac{15}{x+2}\) + \(\dfrac{14}{x+2}\)
A = \(\dfrac{29}{x+2}\)
b; A = \(\dfrac{29}{x+2}\) (-2 ≠ \(x\) \(\in\) Z)
A \(\in\) Z ⇔ 29 ⋮ \(x\) + 2
\(x\) + 2 \(\in\) Ư(29) = {-29; - 1; 1; 29}
Lập bảng ta có:
\(x\) + 2 | - 29 | - 1 | 1 | 29 |
\(x\) | -31 | -3 | -1 | 27 |
Theo bảng trên ta có: \(x\) \(\in\) {- 31; -3; -1; 27}
Vậy \(x\) \(\in\) {-31; -3; -1; 27}
a) Ta có : \(A=\frac{1}{15}.\frac{225}{x+2}+\frac{3}{14}.\frac{196}{3x+6}\)
\(=\frac{225}{15}.\frac{1}{x+2}+\frac{196}{14}.\frac{3}{3x+6}\)
\(=15.\frac{1}{x+2}+14.\frac{1}{x+2}\)
\(=\frac{1}{x+2}\left(15+14\right)\)
\(=\frac{1}{x+2}.29\)
\(=\frac{29}{x+2}\)
Vậy A = \(\frac{29}{x+2}\)
b) Ta có : \(A=\frac{29}{x+2}\)
Để \(A\in Z\Rightarrow\frac{29}{x+2}\in Z\Rightarrow x+2\in\text{Ư}_{\left(29\right)}=\left\{1;-1;29;-29\right\}\text{ }\text{ }\)
Ta xét bảng sau :
x+2 | -1 | 1 | -29 | 29 |
x | -3 | -1 | -31 | 27 |
Vậy \(x\in\left\{-3;-1;-31;27\right\}\)
c) Trong các giá trị A nguyên trên GTLN của A là 27
GTNN của A là -31
\(A=\frac{3}{x-1}\)
=> x - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}
x -1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b) \(B=\frac{x+2}{x+1}=\frac{x+1+1}{x+1}=1+\frac{1}{x+1}\)
=> x + 1 \(\in\)Ư(1) = { \(\pm\)1}
=> x = 0 hoặc x = -2
c) \(C=\frac{5}{2x+7}\)
=> 2x + 7 \(\in\)Ư(5) = { \(\pm1;\pm5\)}
=> 2x \(\in\){-6 ; -8 ; -2 ; -12}
=> x \(\in\){ -3; -4 ; -1; -6}
d) \(D=\frac{11x-8}{x+2}=\frac{11\left(x+2\right)-30}{x+2}=11-\frac{30}{x+2}\)
=> 30 \(⋮\)x + 2 => x + 2 thuộc Ư(30)
Tự xét
Bg
a) Ta có: A = \(\frac{3}{x-1}\) (x thuộc Z)
Để A nguyên thì 3 \(⋮\)x - 1
=> x - 1 thuộc Ư(3)
Ư(3) = {1; -1; 3; -3}
=> x - 1 = 1 hay -1 hay 3 hay -3
=> x = 1 + 1 hay -1 + 1 hay 3 + 1 hay -3 + 1
=> x = {2; 0; 4; -2}
b) Ta có: B = \(\frac{x+2}{x+1}\) (x thuộc Z)
Để B nguyên thì x + 2 \(⋮\)x + 1
=> x + 2 - (x + 1) \(⋮\)x + 1
=> x + 2 - x - 1 \(⋮\)x + 1
=> x - x + (2 - 1) \(⋮\)x + 1
=> 1 \(⋮\)x + 1
=> x + 1 thuộc Ư(1)
Ư(1) = {1; -1}
=> x + 1 = 1 hay -1
=> x = 1 - 1 hay -1 - 1
=> x = {0; -2}
c) Ta có: C = \(\frac{5}{2x+7}\) (x thuộc Z)
Để C nguyên thì 5 \(⋮\)2x + 7
=> 2x + 7 thuộc Ư(5)
Ư(5) = {1; - 1; 5; -5}
=> 2x + 7 = 1 hay -1 hay 5 hay -5
......... (Tự làm)
=> x = {-3; -4; -1; -6}
d) Ta có: D = \(\frac{11x-8}{x+2}\) (x thuộc Z)
Để D nguyên thì 11x - 8 \(⋮\)x + 2
=> 11x - 8 - [11(x + 2)] \(⋮\)x + 2
=> 11x - 8 - 11x - 11.2 \(⋮\)x + 2
=> 11x - 11x - (22 + 8) \(⋮\)x + 2
=> 30 \(⋮\)x + 2
=> x + 2 thuộc Ư(30)
Ư(30) = {...}
.... (Tự làm)
=> x = {…}
a) \(A=\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Thay x=4 (tm) vào A ta có: \(A=\frac{6\cdot4-1}{3\cdot4+2}=\frac{23}{14}\)
Thay x=-1(tm) vào A ta có: \(A=\frac{-1\cdot6-1}{3\cdot\left(-1\right)+2}=\frac{-6-1}{-3+2}=\frac{-7}{-1}=7\)
Thay x=0 (tm) ta có: \(A=\frac{6\cdot0-1}{3\cdot0+2}=\frac{-1}{2}\)
Vậy A=\(\frac{23}{14}\)khi x=4; \(A=7\)khi x=-1; A=\(\frac{-1}{2}\)khi x=0
b) A=\(\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Để A là số nguyên thì 6x-1 chia hết cho 3x+2
\(\Leftrightarrow A=\frac{2\left(3x+2\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Để A nguyên thì \(\frac{5}{3x+2}\)nguyên => 5 chia hết cho 3x+2
Vì x thuộc Z => 3x+2 thuộc Z => 3x+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
3x+2 | -5 | -1 | 1 | 5 |
3x | -7 | -3 | -1 | 3 |
x | \(\frac{-7}{3}\) | -1 | \(\frac{-1}{3}\) | 1 |
Vậy x={-1;1} thì A nguyên