K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2016

a)để A có giá trị nguyên

=>-3 chia hết 2x-1

=>2x-1\(\in\){-3,-1,1,3}

=>2x-1\(\in\){-7;-3;1;5}

b)để B có giá trị nguyên

=>4x+5 chia hết 2x-1

<=>[2(2x-1)+7] chia hết 2x-1

=>2x-1\(\in\){1,-1,7,-7}

=>x\(\in\){1;-3;13;-15}

c tương tự

10 tháng 4 2016

cau c minh khong bt lm ban lm not cau c cho minh dc ko

3 tháng 7 2024

a; A =  \(\dfrac{1}{15}\) \(\times\) \(\dfrac{225}{x+2}\) + \(\dfrac{3}{14}\) \(\times\) \(\dfrac{196}{3x+6}\) (đk \(x\) ≠ - 2)

   A =     \(\dfrac{15}{x+2}\) + \(\dfrac{3\times14}{3\times\left(x+2\right)}\)

   A =      \(\dfrac{15}{x+2}\) +  \(\dfrac{14}{x+2}\) 

   A = \(\dfrac{29}{x+2}\) 

3 tháng 7 2024

b; A = \(\dfrac{29}{x+2}\) (-2 ≠ \(x\) \(\in\) Z)

   A  \(\in\) Z ⇔ 29 ⋮ \(x\) + 2

   \(x\) + 2 \(\in\) Ư(29) = {-29; - 1; 1; 29}

 Lập bảng ta có: 

\(x\) + 2 - 29 - 1 1 29
\(x\) -31 -3 -1 27

Theo bảng trên ta có: \(x\) \(\in\) {- 31; -3; -1; 27}

Vậy \(x\) \(\in\) {-31; -3; -1; 27}

  

 

 

30 tháng 3 2017

giúp mình đi mình cũng ko làm dc bài này 

26 tháng 8 2017

a) Ta có : \(A=\frac{1}{15}.\frac{225}{x+2}+\frac{3}{14}.\frac{196}{3x+6}\)

                   \(=\frac{225}{15}.\frac{1}{x+2}+\frac{196}{14}.\frac{3}{3x+6}\) 

                   \(=15.\frac{1}{x+2}+14.\frac{1}{x+2}\) 

                    \(=\frac{1}{x+2}\left(15+14\right)\) 

                    \(=\frac{1}{x+2}.29\)

                    \(=\frac{29}{x+2}\)

             Vậy A = \(\frac{29}{x+2}\)

b)  Ta có : \(A=\frac{29}{x+2}\)

Để \(A\in Z\Rightarrow\frac{29}{x+2}\in Z\Rightarrow x+2\in\text{Ư}_{\left(29\right)}=\left\{1;-1;29;-29\right\}\text{ }\text{ }\)

Ta xét bảng sau :

x+2   -1    1  -29  29
x -3 -1 -31 27

             Vậy \(x\in\left\{-3;-1;-31;27\right\}\)

c) Trong các giá trị A nguyên trên GTLN của A là 27

                                                      GTNN của A là -31

15 tháng 7 2023

Không biết mẫu số và x như thế nào? Bạn xem lại

3 tháng 7 2024

3 tháng 7 2024

7 tháng 8 2020

\(A=\frac{3}{x-1}\)

=> x - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}

x -11-13-3
x204-2

b) \(B=\frac{x+2}{x+1}=\frac{x+1+1}{x+1}=1+\frac{1}{x+1}\)

=> x + 1 \(\in\)Ư(1) = { \(\pm\)1}

=> x = 0 hoặc x = -2

c) \(C=\frac{5}{2x+7}\)

=> 2x + 7 \(\in\)Ư(5) = { \(\pm1;\pm5\)}

=> 2x \(\in\){-6 ; -8 ; -2 ; -12}

=> x \(\in\){ -3; -4 ; -1; -6}

d) \(D=\frac{11x-8}{x+2}=\frac{11\left(x+2\right)-30}{x+2}=11-\frac{30}{x+2}\)

=> 30 \(⋮\)x + 2 => x + 2 thuộc Ư(30)

Tự xét

7 tháng 8 2020

Bg

a) Ta có: A = \(\frac{3}{x-1}\)    (x thuộc Z)

Để A nguyên thì 3 \(⋮\)x - 1

=> x - 1 thuộc Ư(3)

Ư(3) = {1; -1; 3; -3}

=> x - 1 = 1 hay -1 hay 3 hay -3

=> x = 1 + 1 hay -1 + 1 hay 3 + 1 hay -3 + 1

=> x = {2; 0; 4; -2}

b) Ta có: B = \(\frac{x+2}{x+1}\)   (x thuộc Z)

Để B nguyên thì x + 2 \(⋮\)x + 1

=> x + 2 - (x + 1) \(⋮\)x + 1

=> x + 2 - x - 1 \(⋮\)x + 1

=> x - x + (2 - 1) \(⋮\)x + 1

=> 1 \(⋮\)x + 1

=> x + 1 thuộc Ư(1)

Ư(1) = {1; -1}

=> x + 1 = 1 hay -1

=> x = 1 - 1 hay -1 - 1

=> x = {0; -2}

c) Ta có: C = \(\frac{5}{2x+7}\)    (x thuộc Z)

Để C nguyên thì 5 \(⋮\)2x + 7

=> 2x + 7 thuộc Ư(5)

Ư(5) = {1; - 1; 5; -5}

=> 2x + 7 = 1 hay -1 hay 5 hay -5

......... (Tự làm)

=> x = {-3; -4; -1; -6}

d) Ta có: D = \(\frac{11x-8}{x+2}\)  (x thuộc Z)

Để D nguyên thì 11x - 8 \(⋮\)x + 2

=> 11x - 8 - [11(x + 2)] \(⋮\)x + 2

=> 11x - 8 - 11x - 11.2 \(⋮\)x + 2

=> 11x - 11x - (22 + 8) \(⋮\)x + 2

=> 30 \(⋮\)x + 2

=> x + 2 thuộc Ư(30)

Ư(30) = {...}

.... (Tự làm)

=> x = {…}

7 tháng 3 2020

a) \(A=\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)

Thay x=4 (tm) vào A ta có: \(A=\frac{6\cdot4-1}{3\cdot4+2}=\frac{23}{14}\)

Thay x=-1(tm) vào A ta có: \(A=\frac{-1\cdot6-1}{3\cdot\left(-1\right)+2}=\frac{-6-1}{-3+2}=\frac{-7}{-1}=7\)

Thay x=0 (tm) ta có: \(A=\frac{6\cdot0-1}{3\cdot0+2}=\frac{-1}{2}\)

Vậy A=\(\frac{23}{14}\)khi x=4; \(A=7\)khi x=-1; A=\(\frac{-1}{2}\)khi x=0

b) A=\(\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)

Để A là số nguyên thì 6x-1 chia hết cho 3x+2

\(\Leftrightarrow A=\frac{2\left(3x+2\right)-5}{3x+2}=2-\frac{5}{3x+2}\)

Để A nguyên thì \(\frac{5}{3x+2}\)nguyên => 5 chia hết cho 3x+2

Vì x thuộc Z => 3x+2 thuộc Z => 3x+2 thuộc Ư (5)={-5;-1;1;5}

Ta có bảng

3x+2-5-115
3x-7-3-13
x\(\frac{-7}{3}\)-1\(\frac{-1}{3}\)1

Vậy x={-1;1} thì A nguyên