Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(D=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}\)\(=1+\frac{3}{n-2}\)
=> Để D đạt GTLN thì 3/n-2 đạt giá trị lớn nhất
Ta có 3>0 và 3/n-2 đạt GTLN => n-2 nhỏ nhất
=> n-2 là số nguyên dương nhỏ nhất
=> n-2=1 => n=3 thuộc Z
Vậy n=3 thì D có GTLN
D=(n+1)/(n-2)=n-2-1/n-2 =n-2/n-2 + 1/n-2 =1+1/n-2
Để D lớn nhất thì D' =1/n-2
Khi n-2<0 suy ra d'<0
Khi n-2>0 suy ra d'>o
Để d' =1/n-2 đạt max thì n-2 phải là giá trị nguyên dương nhỏ nhất.
n-2=1=>n=3 và khi n=3 thì max D=3+1/3-2=4
\(D=\frac{3}{n-2}+1\)
Để D lớn nhất thì \(\frac{3}{n-2}\)lớn nhất tức n-2 nhỏ nhất và n-2 dương
Do n nguyên nên GTNN của n-2 là 1, n=3
Vậy GTLN của D=\(\frac{3+1}{3-2}=4\)
D=(n+1)/(n-2)=n-2-1/n-2
=n-2/n-2 + 1/n-2
=1+1/n-2
để D lớn nhất thì D' =1/n-2
khi n-2<0 suy ra d'<0
khi n-2>0 suy ra d'>o
để d' =1/n-2 đạt max thì n-2 phải là giá trị nguyên dương nhỏ nhất.
n-2=1=>n=3
và khi n=3 thì max D=3+1/3-2=4
a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3
=> 2.(2n-3)+5\(⋮\)2n-3
Mà 2.(2n-3)\(⋮\)2n-3
=>5\(⋮\)2n-3
=>2n-3\(\in\)Ư(5)
lập bảng
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
Vậy n \(\in\){-1;1;2;4}
b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0
TH1 2n-3=1
2n=1+3
2n=4
n=4:2
n=2( chọn)
Vậy n=2
D=\(\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)=> D nguyên <=> 3/n-2 nguyên ( 1nguyên r) => n-2 thuộc Ư(3) ,=> thuộc: (+-1;+-3) <=> n thuộc (3;1;5;-1)
\(F=\frac{n^2-2n+3n-6+1}{n-2}=\frac{\left(n-2\right)\left(n+3\right)+1}{n-2}=n+3+\frac{1}{n-2}\)
=> F nguyên <=> n+3 nguyên và 1/ n-2 nguyên <=> n nguyên và n-2 thuộc Ư(1) <=> thuộc (+-1) <=> n thuộc (3;1)
Ta có: A= (n+1)/(n-2)=(n-2+3)/(n-2)=(n-2)/(n-2) +3/(n-2)= 1+3/(n-2)
a) để A là số nguyên thì n-2 phải là ước của 3
=> n-2={-3; -1; 1; 3}
=> n={-1; 1; 3; 5}
b) Để A đạt giá trị lớn nhất thì 3/(n-2) đạt giá trị dương lớn nhất => n-2 phải đạt giá trị dương nhỏ nhất => n-2=1=> n=3
Khi đó GTLN của A là: 1+3=4
Ta có : \(D=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
\(\Rightarrow\)Để D đạt giá trị nhỏ nhất thì \(\frac{3}{n-2}\)đạt giá trị nhỏ nhất
Ta có : \(3>0\) và \(\frac{3}{n-2}\)đạt giá trị nhỏ nhất \(\Rightarrow n-2\)nhỏ nhất
\(\Rightarrow n-2\)là số nguyên dương nhỏ nhất
\(\Rightarrow n-2=1\Rightarrow n=3\in Z\)
Vậy \(n=3\) thì D có giá trị nhỏ nhất
\(D=\frac{n+1}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
D lớn nhất <=> \(\frac{3}{n-2}\) lớn nhất
<=> n - 2 là số nguyên dương nhỏ nhất (vì nếu là 0 thì phân số k có nghĩa, còn nếu là số âm thì \(\frac{3}{n-2}\) cũng âm nên k thể lớn nhất được)
<=> n - 2 = 1 <=> n = 3
D đạt GTLN là \(\frac{3+1}{3-2}=\frac{4}{2}=2\) tại n = 3