K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2016

Ta có : \(D=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

\(\Rightarrow\)Để D đạt giá trị nhỏ nhất thì \(\frac{3}{n-2}\)đạt giá trị nhỏ nhất

Ta có : \(3>0\) và \(\frac{3}{n-2}\)đạt giá trị nhỏ nhất \(\Rightarrow n-2\)nhỏ nhất

\(\Rightarrow n-2\)là số nguyên dương nhỏ nhất

\(\Rightarrow n-2=1\Rightarrow n=3\in Z\)

Vậy \(n=3\) thì D có giá trị nhỏ nhất

6 tháng 6 2016

\(D=\frac{n+1}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

D lớn nhất <=> \(\frac{3}{n-2}\) lớn nhất

<=> n - 2 là số nguyên dương nhỏ nhất (vì nếu là 0 thì phân số k có nghĩa, còn nếu là số âm thì \(\frac{3}{n-2}\) cũng âm nên k thể lớn nhất được)

<=> n - 2 = 1 <=> n = 3

D đạt GTLN là \(\frac{3+1}{3-2}=\frac{4}{2}=2\) tại n = 3

6 tháng 6 2016

Ta có: \(D=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}\)\(=1+\frac{3}{n-2}\)

=> Để D đạt GTLN thì 3/n-2 đạt giá trị lớn nhất

Ta có 3>0 và 3/n-2 đạt GTLN => n-2 nhỏ nhất

=> n-2 là số nguyên dương nhỏ nhất

=> n-2=1 => n=3 thuộc Z

Vậy n=3 thì D có GTLN

15 tháng 11 2023

Vũ™©®×÷|

20 tháng 8 2017

D=(n+1)/(n-2)=n-2-1/n-2 =n-2/n-2 + 1/n-2 =1+1/n-2

Để D lớn nhất thì D' =1/n-2

Khi n-2<0 suy ra d'<0

Khi n-2>0 suy ra d'>o

Để d' =1/n-2 đạt max thì n-2 phải là giá trị nguyên dương nhỏ nhất.

n-2=1=>n=3 và khi n=3 thì max D=3+1/3-2=4

20 tháng 8 2017

\(D=\frac{3}{n-2}+1\)

Để D lớn nhất thì \(\frac{3}{n-2}\)lớn nhất tức n-2 nhỏ nhất và n-2 dương

Do n nguyên nên GTNN của n-2 là 1, n=3

Vậy GTLN của D=\(\frac{3+1}{3-2}=4\)

18 tháng 5 2016

D=(n+1)/(n-2)=n-2-1/n-2

=n-2/n-2 + 1/n-2

=1+1/n-2

để D lớn nhất thì D' =1/n-2

khi n-2<0 suy ra d'<0

khi n-2>0 suy ra d'>o

để d' =1/n-2 đạt max thì n-2 phải là giá trị nguyên dương nhỏ nhất.

n-2=1=>n=3

và khi n=3 thì max D=3+1/3-2=4 

10 tháng 5 2021

a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3

                                        => 2.(2n-3)+5\(⋮\)2n-3

   Mà 2.(2n-3)\(⋮\)2n-3

=>5\(⋮\)2n-3

=>2n-3\(\in\)Ư(5)

lập bảng

2n-31-15-5
n214-1

Vậy n \(\in\){-1;1;2;4}

b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0

TH1 2n-3=1

        2n=1+3

       2n=4

        n=4:2

        n=2( chọn)

 Vậy n=2

4 tháng 7 2015

D=\(\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)=> D nguyên <=> 3/n-2 nguyên ( 1nguyên r) => n-2 thuộc Ư(3) ,=> thuộc: (+-1;+-3) <=> n thuộc (3;1;5;-1)

\(F=\frac{n^2-2n+3n-6+1}{n-2}=\frac{\left(n-2\right)\left(n+3\right)+1}{n-2}=n+3+\frac{1}{n-2}\)

=> F nguyên <=> n+3 nguyên và 1/ n-2 nguyên <=> n nguyên và n-2 thuộc Ư(1) <=> thuộc (+-1) <=> n thuộc (3;1)

27 tháng 3 2017

Ta có: A= (n+1)/(n-2)=(n-2+3)/(n-2)=(n-2)/(n-2) +3/(n-2)= 1+3/(n-2)

a) để A là số nguyên thì n-2 phải là ước của 3

=> n-2={-3; -1; 1; 3}

=> n={-1; 1; 3; 5}

b) Để A đạt giá trị lớn nhất thì 3/(n-2) đạt giá trị dương lớn nhất => n-2 phải đạt giá trị dương nhỏ nhất => n-2=1=> n=3

Khi đó GTLN của A là: 1+3=4