K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

Có: \(3\left[\left(x-2\right)^{10}+2\right]=3\left(x-2\right)^{10}+6\ge6\) với mọi x

\(=>A\le\frac{5}{6}\) với mọi x

Dấu "=" xảy ra <=> x-2=0<=>x=2

Vậy maxA=5/6 khi x=2

30 tháng 9 2016

 Có (4 - x)2 \(\ge\)0 với mọi x

=> (4 - x)2 - 2 \(\ge\)-2 với mọi x

=> \(\frac{10}{\left(4-x\right)^2-2}\ge\frac{10}{-2}\)

=> \(\frac{-10}{\left(4-x\right)^2-2}\le\frac{-10}{-2}\)

=> \(\frac{-10}{\left(4-x\right)^2-2}\le5\)

=> \(C\le5\)

Dấu "=" xảy ra <=> (4 - x)2 = 0

<=> 4 - x = 0

<=> x = 4

KL: \(C_{max}=5\)<=> x = 4

=> 

8 tháng 10 2016

Có : \(\left(4-x\right)^2\ge0\)

\(\Rightarrow\left(4-x\right)^2-2\ge-2\)

\(\Rightarrow\frac{10}{\left(4-x\right)^2-2}\ge\frac{10}{-2}\)

\(\Rightarrow\frac{-10}{\left(4-x\right)^2-2}\le\frac{-10}{-2}\)

\(\Rightarrow\frac{-10}{\left(4-x\right)^2-2}=5\)

\(\Leftrightarrow C\le5\)

Dấu " = " xảy ra khi và chỉ khi \(\left(4-x\right)^2=0\)

                                                   \(\Leftrightarrow x=4\)

Vậy \(Max_C=5\Leftrightarrow x=4\).

31 tháng 1 2017

SR 

Em lớp 6 ạ :D

Ta có: \(\left(x+2\right)^2=0\) khi \(x=-2\)

\(\Rightarrow GTLN\)của \(A=\frac{3}{4}\)khi \(x=-2\)

Vậy GTLN của \(A=\frac{3}{4}\)

29 tháng 5 2016

\(\left|x-1\right|+\left|2x-2\right|+\left|3x-3\right|=6\left(1\right)\)

Xét : \(x-1=0\Leftrightarrow x=1;x-1< 0\Leftrightarrow x< 1;x-1>0\Leftrightarrow x>1\)

        \(2x-2=0\Leftrightarrow x=1;2x-2< 0\Leftrightarrow x< 1;2x-2>0\Leftrightarrow x>1\)

        \(3x-3=0\Leftrightarrow x=1;3x-3< 0\Leftrightarrow x< 1;3x-3>0\Leftrightarrow x>1\)

Ta có bảng xét dấu các đa thức x-1 ; 2x-2 ; 3x-3 sau : 

      X                                 1
       x-1                 -                 0                      +
       2x-2                 -                0                      +
      3x-3                 -                0                      +

 

Xét khoảng \(x< 1\) ta có :

(1) \(\Leftrightarrow1-x+2-2x+3-3x=6\Leftrightarrow6-6x=6\Leftrightarrow x=0\) (Giá trị này thuộc khoảng đang xét )

Xét khoảng \(x>0\) ta có : 

(1) \(\Leftrightarrow x-1+2x-2+3x-3=6\Leftrightarrow6x-6=6\Leftrightarrow x=2\) ( Giá trị này thuộc khoảng đang xét )

Vậy \(x=0\) và \(x=2\) thỏa mãn

 

7 tháng 9 2016

\(B=9-\left|x-\frac{1}{2}\right|\)

Vì : \(-\left|x-\frac{1}{2}\right|\le9\)

=> \(9-\left|x-\frac{1}{2}\right|\le9\)

Vậy GTLN của B là 9 khi \(x=\frac{1}{2}\)

7 tháng 9 2016

Ta có : \(\left|x-\frac{1}{2}\right|\ge0\Rightarrow-\left|x-\frac{1}{2}\right|\le0\Rightarrow9-\left|x-\frac{1}{2}\right|\le9\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-\frac{1}{2}\right|=0\Leftrightarrow x=\frac{1}{2}\)

Vậy Max B = 9 <=> x = 1/2