Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\Rightarrow2A=\frac{30\left|x+1\right|+64}{6\left|x+1\right|+8}=5+\frac{24}{6\left|x+1\right|+8}=5+\frac{12}{3\left|x+1\right|+4}\)
Ta thấy \(\left|x+1\right|\ge0\) với mọi x
\(\Rightarrow3\left|x+1\right|\ge0\Rightarrow3\left|x+1\right|+4\ge4\Rightarrow0< \frac{12}{3\left|x+1\right|+4}\le3\)
\(\Rightarrow5< A\le8\)
Suy ra GTLN của A là 8 khi |x+1|=0 hay x=-1
VẬY GTLN của A là 8 khi x=-1
câu a thui còn câu b mk chưa có bít làm
bn k cho mk nha
Bạn Aquarius bài sai rùi
Bạn ấy ghi 2A=... mà chưa =>A=...
sao bạn kết luận hay thế?
a) Để A lớn nhất thí 13 - x nhỏ nhất hay x lớn nhất
+ Với x > 13 thì 13 - x < 0 \(\Rightarrow A=\frac{17}{13-x}< 0\left(1\right)\)
+ Với x < 13, do x lớn nhất nên x = 12, khi đó
\(A=\frac{17}{13-12}=\frac{17}{1}=17\left(2\right)\)
So sánh (1) với (2) ta thấy (2) lớn hơn
Vậy \(A_{Max}=17\) khi x = 12
b) \(B=\frac{32-2x}{11-x}=\frac{10+22-2x}{11-x}=\frac{10+2.\left(11-x\right)}{11-x}=\frac{10}{11-x}+\frac{2.\left(11-x\right)}{11-x}=\frac{10}{11-x}+2\)
Để B lớn nhất thì \(\frac{10}{11-x}\) lớn nhất
<=> 11 - x nhỏ nhất hay x lớn nhất
+ Với x > 11 thì 11 - x < 0 \(\Rightarrow\frac{10}{11-x}< 0\Rightarrow B< 2\left(1\right)\)
+ Với x < 11, do x lớn nhất nên x = 10, khi đó
\(B=\frac{32-2.10}{11-10}=\frac{32-20}{1}=12\left(2\right)\)
So sánh (1) với (2) ta thấy (2) lớn hơn
Vậy \(B_{Max}=12\) khi x = 10
a)Để A đạt GTLN
=>Mẫu đạt giá trị dương nhỏ nhất
\(\Rightarrow13-x=1\)
\(\Rightarrow x=12\)
b)tương tự
a) \(L=\frac{3}{4}-\left|x-\frac{1}{2}\right|\le\frac{3}{4}\forall x\)
GTLN của L = 3/4 khi x = 1/2.
b) 2X + 3 chia hết cho X - 1
=> 2X - 2 + 5 chia hết cho X - 1
=> 2*(X - 1) + 5 chia hết cho X - 1
=> 5 chia hết cho X - 1
=> X - 1 là U(5) = {-5;-1;1;5}
=> X = -4; 0; 2; 6.
Vậy có 4 giá trị của X là : -4; 0; 2; 6 thì 2X + 3 chia hết cho X - 1.
\(B=\frac{32-2x}{11-x}=\frac{11-x+21-x}{11-x}=1+\frac{21-x}{11-x}=1+\frac{11-x+10}{11-x}=2+\frac{10}{11-x}\)
để B lớn nhất thì \(\frac{10}{11-x}\)lớn nhất
\(\Rightarrow11-x\)nhỏ nhất(khác 0)
\(\Rightarrow x=10\)
\(\Rightarrow B=12\)tại \(x=10\)
\(\frac{7x-8}{2x-3}=\frac{2\left(7x-8\right)}{2\left(2x-3\right)}=\frac{7\left(2x-3\right)+5}{2\left(2x-3\right)}=\frac{7}{2}+\frac{5}{2\left(2x-3\right)}=\frac{7}{2}+\frac{5}{4x-6}\)
Đặt \(4x-6=k\Rightarrow4x=k+6\) (k thuộc N)
Để \(\frac{7x-8}{2x-3}\)đạt giá trị lớn nhất \(\Leftrightarrow k+6\)là số nguyên dương nhỏ nhất \(⋮4\)
Mà \(k+6\ge6\) => \(k+6=8\) => k = 2
=> x = 2
=> GTLN của \(\frac{7x-8}{2x-3}\) là 6 tại x = 2
Áp dụng bất đẳng thức giá trị tuyệt đối |a| - |b| ≤ |a + b|. Dấu "=" xảy ra khi (a + b). b ≤ 0
Áp dụng bất đẳng thức trên ta có |6 - 2x| - 2|4 + x| = |6 - 2x| - |8 + 2x| ≤ |6 - 2x + 8 + 2x| = |14| = 14
Dấu "=" xảy ra <=> (6 - 2x + 8 + 2x).(8 + 2x) ≤ 0 <=> 2(4 +x) ≤ 0 <=> 4 + x ≤ 0 => x ≤ - 4
Vậy GTLN của biể thức bằng 14 khi x ≤ - 4