K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

Ta có:

A = 12x - 4x2 + 3 = -4(x2 - 3x + 9/4) + 12 = -4(x - 3/2)2 + 12

Ta luôn có: (x - 3/2)2 \(\ge\)\(\forall\)x => -4(x  - 3/2)2 \(\le\)\(\forall\)x

=> -4(x - 3/2)2 + 12 \(\le\)12 \(\forall\)x

Dấu "=" xảy ra khi : (x - 3/2)2 = 0 <=> x - 3/2 = 0 <=> x = 3/2

Vậy Amax = 12 tại x= 3/2

25 tháng 6 2019

\(C=6x-x^2+3\)

\(C=-\left(x^2-6x+9\right)+12\)

\(C=-\left(x-3\right)^2+12\)

\(\le12\)

Dấu "=" xảy ra khi \(x=3\)