K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2021

\(C=\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)

Dấu ''='' xảy ra khi \(x=1;y=-1\)

Vậy GTNN C là 0 khi x = 1 ; y = -1 

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

23 tháng 7 2021

C = -x^2 - 2x + 3 = - ( x^2 + 2x - 3 ) 

= - ( x^2 + 2x + 1 - 4 ) = -( x + 1 )^2 + 4 =< 4 

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN C là 4 khi x = -1 

D = -x^2 - 3x + 7 = - ( x^2 + 3x - 7 ) 

=- ( x^2 + 2.3/2.x+ 9 /4 - 37 / 4 ) 

= - ( x + 3/2 )^2 + 37/4 =< 37/4

Dấu ''='' xảy ra khi x = -3/2 

Vậy GTLN D là 37/4 khi x = -3/2 

14 tháng 8 2016

1/ B = (x+y)((x+y)- 3xy)+(x+y)- 2xy = 2 - 5xy = 2 - 5x(1-x)=5x- 5x + 2 = (x√5 - √5 /2)+3/4 >= 3/4 

Đạt GTNN là 3/4 khi x=y=1/2

2/ P = xy = x(6-x)=-x+6x = 9 - (x-3)2 <=9 

GTLN là 9 khi x=y=3

31 tháng 10 2021

\(VT=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\left(x-y\right)^2\left(x+y\right)^2=VP\)

31 tháng 10 2021

VT\(=\left(x^2+y^2-2xy\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x-y\right)^2\cdot\left(x+y\right)^2\)