K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)

 \(y=2-\left(-cosx\right).\left(-sinx\right)\)

y = 2 - sinx.cosx

y = \(2-\dfrac{1}{2}sin2x\)

Max = 2 + \(\dfrac{1}{2}\) = 2,5

Min = \(2-\dfrac{1}{2}\) = 1,5

2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)

Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)

Max = \(\sqrt{5}\)

22 tháng 5 2021

2.Biểu thức luôn xác định

\(y=\dfrac{4}{\sqrt{5-2cos^2sin^2x}}=\dfrac{4}{\sqrt{5-\dfrac{1}{2}sin^22x}}\)

Có: \(1\ge sin^22x\ge0\)

\(\Leftrightarrow-\dfrac{1}{2}\le-\dfrac{1}{2}sin^22x\le0\)

\(\Leftrightarrow\dfrac{3\sqrt{2}}{2}\le\sqrt{5-\dfrac{1}{2}sin^22x}\le\sqrt{5}\)

\(\Rightarrow\dfrac{4\sqrt{2}}{3}\ge y\ge\dfrac{4\sqrt{5}}{5}\)

miny=\(\dfrac{4\sqrt{5}}{5}\) \(\Leftrightarrow sin2x=0\)\(\Leftrightarrow x=\dfrac{k\pi}{2}\left(k\in Z\right)\)

maxy=\(\dfrac{4\sqrt{2}}{3}\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{-\pi}{4}+k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

22 tháng 5 2021

1.Biểu thức luôn xác định

Xét \(sin2x=0\) \(\Leftrightarrow x=\dfrac{k\pi}{2}\left(k\in Z\right)\) khi đó \(y=-6\)

Xét \(sin2x\ne0\) 

=> \(1\ge sin^52x\ge-1\)

\(\Leftrightarrow4-1\le4-sin^52x\le4+1\)

\(\Leftrightarrow\sqrt{3}\le\sqrt{4-sin^52x}\le\sqrt{5}\)

\(\Leftrightarrow\sqrt{3}-8\le y\le\sqrt{5}-8\)

\(y=\sqrt{3}-8< -6\) , \(y=\sqrt{5}-8>-6\)

=>min= \(\sqrt{3}-8\) \(\Leftrightarrow sin2x=1\left(tm\right)\) \(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)

maxy=\(\sqrt{5}-8\)\(\Leftrightarrow sin2x=-1\left(tm\right)\) \(\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)

(câu này e ko chắc)

22 tháng 5 2021

ĐK: Biểu thức xác định với mọi `x`.

`y_(min) <=> (\sqrt(2-cos(x-π/6))+3)_(max) <=> (cos(x-π/6))_(max)`

`<=> cos(x-π/6)=1 <=> x-π/6=k2π <=> x = π/6+k2π ( k \in ZZ)`.

`=> y_(min) = 1`

`y_(max) <=> (\sqrt(2-cos(x-π/6))+3)_(min) <=> (cos(x-π/6))_(min)`

`<=> cos(x-π/6)=-1 <=> x -π/6= π+k2π <=> x = (7π)/6+k2π (k \in ZZ)`

`=> y_(max) = (6-2\sqrt3)/3`.

22 tháng 5 2021

Vội vàng quá r bạn, y max mà lại bé hơn y min ư?

18 tháng 7 2020

Ta có: 

\(-1\le\sin2x\le1\)

=> \(\sqrt{4-2.\left(1\right)^5}-8\le\sqrt{4-2.\left(\sin2x\right)^5}-8\le\sqrt{4-2.\left(-1\right)^5}-8\)

=> \(\sqrt{2}-8\le\sqrt{4-2.\left(\sin2x\right)^5}-8\le\sqrt{6}-8\)

=> tìm ddc min và max

NV
18 tháng 9 2020

\(y=\left(3-sinx\right)\left(1-sinx\right)\ge0\)

\(y_{min}=0\) khi \(sinx=-1\)

\(y=sin^2x-4sinx-5+8=\left(sinx+1\right)\left(sinx-5\right)+8\le8\)

\(y_{max}=8\) khi \(sinx=-1\)

NV
24 tháng 8 2020

\(y=\left(1-cos^2x\right)^2+cos^2x-5\)

\(y=cos^4x-cos^2x-4\)

\(y=\left(cos^2x-\frac{1}{2}\right)^2-\frac{17}{4}\ge-\frac{17}{4}\)

\(y_{min}=-\frac{17}{4}\) khi \(cos^2x=\frac{1}{2}\)

\(y=cos^2x\left(cos^2x-1\right)-4=-cos^2x.sin^2x-4=-\frac{1}{4}sin^22x-4\)

Do \(-\frac{1}{4}sin^22x\le0\Rightarrow y\le-4\)

\(y_{max}=-4\) khi \(sin2x=0\)

21 tháng 5 2021

a)\(y=\sqrt{3}sinx+cosx=2\left(\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\right)\)\(=2\left(sinx.cos\dfrac{\pi}{6}+cosx.sin\dfrac{\pi}{6}\right)\)\(=2sin\left(x+\dfrac{\pi}{6}\right)\)

Có \(-1\le sin\left(x+\dfrac{\pi}{6}\right)\le1\) \(\Leftrightarrow-2\le2sin\left(x+\dfrac{\pi}{6}\right)\le2\)

\(\Leftrightarrow-2\le y\le2\)

miny=-2 \(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=-1\)  \(\Leftrightarrow x+\dfrac{\pi}{6}=-\dfrac{\pi}{2}+2k\pi\left(k\in Z\right)\) \(\Leftrightarrow x=-\dfrac{2\pi}{3}+k2\pi\left(k\in Z\right)\)

maxy=2\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=1\) \(\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)\(\Leftrightarrow x=\dfrac{\pi}{3}+k2\pi\left(k\in Z\right)\)

b) \(y=sin2x-cos2x=\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)\)

Có \(\sqrt{2}\ge\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)\ge-\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}\ge y\ge-\sqrt{2}\)

miny=\(-\sqrt{2}\) \(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=-1\)\(\Leftrightarrow2x-\dfrac{\pi}{4}=-\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)\(\Leftrightarrow x=-\dfrac{\pi}{8}+k\pi\left(k\in Z\right)\)

maxy=\(\sqrt{2}\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=1\)\(\Leftrightarrow x=\dfrac{3\pi}{8}+k\pi\left(k\in Z\right)\)

c) \(y=3sinx+4cosx=5\left(\dfrac{3}{5}sinx+\dfrac{4}{5}cosx\right)\)

Đặt \(cosa=\dfrac{3}{5}\) và \(sina=\dfrac{4}{5}\)(vì cos2a+sin2a=1)

\(y=5\left(sinx.cosa+cosx.sina\right)\)\(=5sin\left(x+a\right)\)

\(\Rightarrow-5\le y\le5\)

miny=-5 <=> \(sin\left(x+a\right)=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{2}-arc.sina+k2\pi\left(k\in Z\right)\)

maxy=5 <=> \(sin\left(x+a\right)=1\)\(\Leftrightarrow x=\dfrac{\pi}{2}-arc.sina+k2\pi\left(k\in Z\right)\)

(P/s1:cái x ở câu c ấy trông nó ngu ngu??
 P/s2:sau khi load lại câu hỏi ở 1 tab khác ,thấy 1 câu trả lời nhưng vẫn đăng vì cảm thấy bỏ đi hơi phí :?)

21 tháng 5 2021

Áp dụng quy tắc sau: Nếu \(a\sin x+b\cos y=c\Leftrightarrow a^2+b^2\ge c^2\)

a/ \(3+1\ge y^2\Leftrightarrow4\ge y^2\Leftrightarrow-2\le y\le2\)

\(y_{max}=2\Leftrightarrow\sqrt{3}\sin x+\cos x=2\Leftrightarrow\dfrac{\sqrt{3}}{2}\sin x+\dfrac{1}{2}\cos x=1\Leftrightarrow\cos\dfrac{\pi}{6}.\sin x+\sin\dfrac{\pi}{6}.\cos x=1\)

\(\Rightarrow\sin\left(x+\dfrac{\pi}{6}\right)=1\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\Leftrightarrow x=\dfrac{\pi}{3}+k2\pi\)

\(y_{min}=-2\Leftrightarrow\sin\left(x+\dfrac{\pi}{6}\right)=-1\Leftrightarrow x+\dfrac{\pi}{6}=-\dfrac{\pi}{2}+k2\pi\Leftrightarrow x=-\dfrac{2}{3}\pi+k2\pi\)

7 tháng 6 2019

Bạn tham khảo thử nha.

18 tháng 9 2021

\(y=sin\left(x+\dfrac{\pi}{3}\right)-sinx\)

\(=\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx-sinx\)

\(=\dfrac{\sqrt{3}}{2}cosx-\dfrac{1}{2}sinx\)

\(=cos\left(x+\dfrac{\pi}{6}\right)\in\left[-1;1\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{mịn}=-1\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\\y_{max}=1\Leftrightarrow x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)