K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2019

Bài 2:

\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)

\(=\frac{1}{2004}\)

3 tháng 6 2019

Bài 2

=1/2 x 2/3 ... x 2003/2004

=1/2004

6 tháng 2 2017

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot.....\cdot\frac{2014}{2013}\)

\(=\frac{2}{2013}\)

13 tháng 8 2017

Ta có:

\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{2017}\right).\left(1-\frac{1}{2018}\right)\)

\(\Rightarrow B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{2016}{2017}.\frac{2017}{2018}\)

Đởn giản hết sẽ còn là:

\(\Rightarrow B=\frac{1}{2018}\)

13 tháng 8 2017

có ai biết câu a, ko vậy

18 tháng 3 2016

\(A=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{2006}{2007}=\frac{1}{2007}\)

k nha bạn

7 tháng 9 2020

Vì \(\orbr{\begin{cases}\left|2x-6\right|\ge0\forall x\\\left|3y+9\right|\ge0\forall y\end{cases}}\Rightarrow-\left|2x-6\right|-\left|3y+9\right|\le0\forall x;y\)

\(\Rightarrow-18-\left|2x-6\right|-\left|3y+9\right|\le-18\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|2x-6\right|=0\\\left|3y+9\right|=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)

Vậy maxC = - 18 <=> x = 3 ; y = - 3 

7 tháng 9 2020

Lớp 5 đã học rồi cơ à :)) Giỏi thế

C = -18 - | 2x - 6 | - | 3y + 9 |

Ta có : \(\hept{\begin{cases}-\left|2x-6\right|\le0\forall x\\-\left|3y+9\right|\le0\forall y\end{cases}}\Rightarrow-18-\left|2x-6\right|-\left|3y+9\right|\le-18\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x-6=0\\3y+9=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

=> MaxC = -18 <=> x = 3, y = -3

17 tháng 7 2017

A=(3/10+4/5x1/2):(1/8/9-1/1/3)

A=(3/10+2/5):5/9

A=7/10:5/9

A=63/50

1 tháng 8 2016

Ta có:

 \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\) \(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)

nha